找到第n个幸运数
幸运数字 - 它是 m > 1 的最小整数,对于给定的正整数 n,pn# + m 是素数,其中 pn# 是第一个 n 的乘积质数。
例如,要计算第三个幸运数字,首先计算前 3 个素数 (2, 3, 5) 的乘积,即 30。加 2 后得到 32,这是偶数,加 3 得到 33,是 3 的倍数。同样可以排除 6 以内的整数。加上 7 得到 37,这是一个素数。因此,7是第三个幸运数字。
第一个原初数的幸运数字是 -
3, 5, 7, 13, 23, 17, 19, 23, 37, 61, 67, 61, 71, 47, 107, 59, 61, 109 ….
问题陈述
给定一个数字n。找到第 n 个幸运数字。
示例 1
Input: n = 3
Output: 7
解释 - 前 3 个价格数字的乘积 -
2 3 5 = 30 30 + 7 = 37, a prime number.
示例 2
Input: n = 7
Output: 19
解释 - 前 7 个素数的乘积 -
2 3 5 7 11 13 17 = 510510 510510 + 19 = 510529, a prime number.
方法一:原始方法
解决该问题的一个简单方法是首先计算 pn#,即前 n 个素数的乘积,然后找到 pn# 与下一个素数之间的差。获得的差额将是一个幸运的数字。
伪代码
procedure prime (num) if num <= 1 ans = TRUE end if for i = 2 to sqrt(num) if i is a factor of num ans = false end if ans = true end procedure procedure nthFortunate (n) prod = 1 count = 0 for i = 2 to count < n if i is prime prod = prod * i count = count + 1 end if nextPrime = prod + 2 while nextPrime is not prime nextPrime = next Prime + 1 ans = nextPrime - prod end procedure
示例:C++ 实现
在下面的程序中,通过计算前n个素数的本初以及找到本初后的下一个素数来计算幸运数。幸运数是下一个素数与本初数之间的差。
#include <bits/stdc++.h> using namespace std; // Function to find if a number is prime or not bool prime(unsigned long long int num){ if (num <= 1) return true; for (int i = 2; i <= sqrt(num); i++){ if (num % i == 0) return false; } return true; } // Function to find the nth Fortunate number unsigned long long int nthFortunate(int n){ long long int prod = 1, count = 0; // Calculating product/primorial of first n prime numbers for (int i = 2; count < n; i++){ if (prime(i)){ prod *= i; count++; } } // Find the next prime greater than the product of n prime numbers unsigned long long int nextPrime = prod + 2; while (!prime(nextPrime)){ nextPrime++; } // Fortunate number is the difference between prime and primorial unsigned long long int ans = nextPrime - prod; return ans; } int main(){ int n = 15; cout << n << "th Fortunate number : " << nthFortunate(n); return 0; }
输出
15th Fortunate number : 107
时间复杂度 - O(nsqrt(n)),其中 prime() 函数的复杂度为 O(sqrt(n)),nthFortunate() 中的 for 循环的复杂度为 O(nsqrt(n))。
空间复杂度 - O(1)
方法 2:埃拉托斯特尼筛法
埃拉托色尼筛用于将所有质数达到一个极限,我们将给出一个值 MAX。在这种方法中,我们创建一个包含所有 true 条目的布尔数组,并将所有非素数索引标记为 false。然后将数组中的前 n 个素数相乘,得到前 n 个素数的乘积。然后与之前的方法类似,从 2 开始将乘积加 1,以获得下一个素数。下一个素数与乘积之差就是所需的幸运数。
伪代码
procedure nthFortunate (n) MAX is set prime[MAX] = {true} prime[0] = false prime[1] = false for i = 1 to i*i <= MAX if prime[i] for j = i*i to MAX with j = j + i in each iteration prime [j] = false end if prod = 1 count = 0 for i = 2 to count < n if prime[i] prod = prod * i count = count + 1 end if nextPrime = prod + 2 while nextPrime is not prime nextPrime = nextPrime + 1 ans = nextPrime - prod end procedure
示例:C++ 实现
在下面的程序中,大小为 MAX 的布尔素数数组记录了 MAX 之前的所有素数。然后通过将前 n 个素数相乘来找到原初。然后与之前的方法类似,找到nextPrime。 nextPrime 和 Product 的区别在于幸运数字。
#include <bits/stdc++.h> using namespace std; // Function to find the nth Fortunate number unsigned long long int nthFortunate(int n){ // Setting upper limit for Sieve of Eratosthenes const unsigned long long int MAX = 1000000000; vector<bool> prime(MAX, true); prime[0] = prime[1] = false; // Sieve of Eratosthenes to find all primes up to MAX for (unsigned long long int i = 2; i * i <= MAX; i++){ if (prime[i]){ // Setting all the multiples of i to false for (int j = i * i; j <= MAX; j += i){ prime[j] = false; } } } // Find the first n primes and calculate their product unsigned long long int prod = 1, count = 0; for (unsigned long long int i = 2; count < n; i++){ if (prime[i]){ prod *= i; count++; } } // Find next prime greater than product unsigned long long int nextPrime = prod + 2; while (!prime[nextPrime]) nextPrime++; // Fortunate number is difference between prime and product return nextPrime - prod; } int main(){ int n = 25; cout << n << "th Fortunate number : " << nthFortunate(n); return 0; }
输出
15th Fortunate number : 107
时间复杂度 - O(n log(log(n)))
空间复杂度 - O(MAX)
结论
综上所述,第n个幸运数可以通过以下两种方式找到。
初等方法:求前n个素数的乘积,并根据乘积计算下一个素数。质数与乘积之差是第 n 个幸运数。
埃拉托斯特尼筛法:找出所有达到某个极限的素数,然后计算与下一个素数的乘积,从而找到幸运数。
仅由于变量大小的限制,这两种方法对于较小的 n 值都是有效的。对于更大的值,需要更高效和优化的解决方案。
以上是找到第n个幸运数的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

写在前面&笔者的个人理解目前,在整个自动驾驶系统当中,感知模块扮演了其中至关重要的角色,行驶在道路上的自动驾驶车辆只有通过感知模块获得到准确的感知结果后,才能让自动驾驶系统中的下游规控模块做出及时、正确的判断和行为决策。目前,具备自动驾驶功能的汽车中通常会配备包括环视相机传感器、激光雷达传感器以及毫米波雷达传感器在内的多种数据信息传感器来收集不同模态的信息,用于实现准确的感知任务。基于纯视觉的BEV感知算法因其较低的硬件成本和易于部署的特点,以及其输出结果能便捷地应用于各种下游任务,因此受到工业

C++中机器学习算法面临的常见挑战包括内存管理、多线程、性能优化和可维护性。解决方案包括使用智能指针、现代线程库、SIMD指令和第三方库,并遵循代码风格指南和使用自动化工具。实践案例展示了如何利用Eigen库实现线性回归算法,有效地管理内存和使用高性能矩阵操作。

C++sort函数底层采用归并排序,其复杂度为O(nlogn),并提供不同的排序算法选择,包括快速排序、堆排序和稳定排序。

1、首先,我们打开手机上的【查找】App,在设备界面的列表中选择设备。2、然后,可以查看位置,还可以点击路线导航过去。

人工智能(AI)与执法领域的融合为犯罪预防和侦查开辟了新的可能性。人工智能的预测能力被广泛应用于CrimeGPT(犯罪预测技术)等系统,用于预测犯罪活动。本文探讨了人工智能在犯罪预测领域的潜力、目前的应用情况、所面临的挑战以及相关技术可能带来的道德影响。人工智能和犯罪预测:基础知识CrimeGPT利用机器学习算法来分析大量数据集,识别可以预测犯罪可能发生的地点和时间的模式。这些数据集包括历史犯罪统计数据、人口统计信息、经济指标、天气模式等。通过识别人类分析师可能忽视的趋势,人工智能可以为执法机构

01前景概要目前,难以在检测效率和检测结果之间取得适当的平衡。我们就研究出了一种用于高分辨率光学遥感图像中目标检测的增强YOLOv5算法,利用多层特征金字塔、多检测头策略和混合注意力模块来提高光学遥感图像的目标检测网络的效果。根据SIMD数据集,新算法的mAP比YOLOv5好2.2%,比YOLOX好8.48%,在检测结果和速度之间实现了更好的平衡。02背景&动机随着远感技术的快速发展,高分辨率光学远感图像已被用于描述地球表面的许多物体,包括飞机、汽车、建筑物等。目标检测在远感图像的解释中

一、58画像平台建设背景首先和大家分享下58画像平台的建设背景。1.传统的画像平台传统的思路已经不够,建设用户画像平台依赖数据仓库建模能力,整合多业务线数据,构建准确的用户画像;还需要数据挖掘,理解用户行为、兴趣和需求,提供算法侧的能力;最后,还需要具备数据平台能力,高效存储、查询和共享用户画像数据,提供画像服务。业务自建画像平台和中台类型画像平台主要区别在于,业务自建画像平台服务单条业务线,按需定制;中台平台服务多条业务线,建模复杂,提供更为通用的能力。2.58中台画像建设的背景58的用户画像

1、点击进入自己手机的高德地图软件。2、再点击右下角的我的。3、点击进入家人地图。4、点击创建我的家人地图。5、创建成功后,会出现邀请码,分享给另外一台手机。
