目录
简介
了解并行处理
Python 中的多线程
示例
输出
Python 中的多重处理
Python 异步编程
Example Domain
选择正确的方法
结论
首页 后端开发 Python教程 在Python中的并行处理

在Python中的并行处理

Sep 11, 2023 pm 11:49 PM
python 多线程 并行处理

在Python中的并行处理

简介

在当今快节奏的数字环境中,对于开发人员和数据科学家来说,有效完成计算困难的任务至关重要。幸运的是,由于其适应性和广泛的生态系统,Python提供了强大的并行处理能力。我们可以通过将困难的问题分解为更小、更易管理的活动,并同时进行处理,从而获得大幅度的性能提升。

Python 的并行处理功能使我们能够利用可用的计算机资源更快、更有效地进行网页抓取、科学模拟和数据分析等活动。在这篇文章中,我们将通过 Python 并行处理开始一段旅程。我们将研究许多方法,包括多处理、异步编程和多线程,并学习如何有效地使用它们来绕过系统中的性能障碍。加入我们,让我们认识到 Python 并行处理的全部威力,并达到性能和生产力的新高度。

了解并行处理

将作业拆分为较小的子任务并在多个处理器或内核上同时运行它们称为并行处理。并行处理可以通过有效地利用可用的计算资源来显着减少程序的总执行时间。异步编程、多处理和多线程只是 Python 提供的几种并行处理方法。

Python 中的多线程

使用多线程的方法,许多线程在同一个进程内同时运行,共享同一块内存。可以使用Python的threading模块很容易地实现多线程。然而,在Python中使用多线程可能不会对CPU密集型操作产生加速效果,因为全局解释器锁(GIL)只允许一个线程同时执行Python字节码。然而,多线程对于I/O密集型任务可能很有用,因为它允许线程在等待I/O操作完成时运行其他操作。

让我们看一个使用多线程下载多个网页的示例:

示例

import threading import requests 
 
def download_page(url): 
    response = requests.get(url)    
print(f"Downloaded {url}") 
 
urls = [ 
    "https://example.com", 
    "https://google.com", 
    "https://openai.com" 
] 
 
threads = [] 
 for url in 
 urls: 
    thread = threading.Thread(target=download_page,
args=(url,))     thread.start()    threads.append(thread) 
 
for thread in threads: 
    thread.join() 
登录后复制

输出

Downloaded https://example.com 
Downloaded https://google.com 
Downloaded https://openai.com 
登录后复制

由于上面的代码片段可以同时进行多个下载,该代码片段在其自己的线程中下载每个 URL。 join() 函数确保主线程等待每个线程完成后再继续。

Python 中的多重处理

多进程与多线程相对应,通过使用多个进程,每个进程都有自己的内存空间,提供了真正的并行性。Python的multiprocessing模块提供了一个高级接口来实现多进程。多进程适用于CPU密集型任务,因为每个进程在独立的Python解释器中运行,避免了GIL多线程限制。

在下面的代码中使用了多进程。一旦池类生成了一组工作进程,map()方法会将负担分配给可用的进程。结果列表是结果的集合。

考虑下面的例子,在这个例子中,我们使用多进程来计算列表中每个整数的平方:

示例

import multiprocessing 
 
def square(number):    
return number ** 2 
 
numbers = [1, 2, 3, 4, 5] 
 
with multiprocessing.Pool() as pool: 
    results = pool.map(square, numbers) 
 
print(results) 
登录后复制

输出

[1, 4, 9, 16, 25] 
登录后复制

Python 异步编程

通过利用非阻塞操作,异步编程实现了I/O密集型进程的高效执行。由于有了asyncio包,Python可以使用协程、事件循环和futures来创建异步代码。随着在线应用和API的流行,异步编程变得越来越重要。

下面的代码示例中的fetch_page()协程利用aiohttp来异步获取网页。main()方法生成一个作业列表,然后使用asyncio.gather()同时执行这些作业。要等待任务完成并接收结果,请使用await关键字。

让我们看一个使用asyncio和aiohttp异步获取多个网页的示例:

示例

import asyncio 
import aiohttp 
 
async def fetch_page(url):     async with aiohttp.ClientSession() as session:         async with session.get(url) as response: 
            return await response.text() 
 
async def main(): 
    urls = [ 
        "https://example.com", 
        "https://google.com", 
        "https://openai.com" 
    ] 
 
    tasks = [fetch_page(url) for url in urls]     pages = await asyncio.gather(*tasks)     
print(pages) 
 
asyncio.run(main()) 
登录后复制

输出

['<!doctype html>\n<html>\n<head>\n    <title>Example Domain</title>\n\n    <meta 
charset="utf-8" />\n    <meta http-equiv="Content-type"content="text/html; charset=utf-8" />\n    <meta name="viewport" content="width=device-width, initialscale=1" />\n    <style type="text/css">\n    body {\n        background-color: #f0f0f2;\n  margin: 0;\n        padding: 0;\n        font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;\n        \n    }\n    div {\n        width: 600px;\n        margin: 5em auto;\n  padding: 50px;\n        background-color: #fff;\n        border-radius: 1em;\n    }\n    a:link, a:visited {\n        color: #38488f;\n        text-decoration: none;\n    }\n    @media (maxwidth: 700px) {\n        body {\n            background-color: #fff;\n        }\n        div {\n  width: auto;\n            margin: 0 auto;\n            border-radius: 0;\n            padding: 1em;\n        }\n    }\n    </style>    \n</head>\n\n<body>\n<div>\n    <h1 id="Example-Domain">Example Domain</h1>\n    <p>This domain is for use in illustrative examples in documents. You may use this\n    domain in literature without prior coordination or asking for permission.</p>\n    <p><a href="https://www.iana.org/domains/example">More information...</a></p>\n</div>\n</body>\n</html>', '<!doctype html><html itemscope="" itemtype="http://schema.org/WebPage" lang="en"><head><meta content="Search the world's information, including webpages, images, videos and more. Google has many special features to help you find exactly what you're looking for." name="description"><meta content="noodp" name="robots"><meta content="text/html; charset=UTF-8" http-equiv="Content-Type"><meta content="/logos/doodles/2021/mom-
and-dad-6116550989716480.2-law.gif" itemprop="image"><link href="/logos/doodles/2021/mom-and-dad-6116550989716480.2-law.gif" rel="icon" type="image/gif"><title>Google</title><script nonce="sJwM0Ptp5a/whzxPtTD8Yw==">(function(){window.google={kEI:'cmKgYY37A7 K09QPhzKuACw',kEXPI:'1354557,1354612,1354620,1354954,1355090,1355493,13556
83,3700267,4029815,4031109,4032677,4036527,4038022,4043492,4045841,4048347,4
048490,4052469,4055589,4056520,4057177,4057696,4060329,4060798,4061854,4062 531,4064696,406 '
登录后复制

选择正确的方法

Python的并行处理技术因任务的特定情况而异。以下是一些指南,可帮助您做出明智的决策:

对于I/O密集型的活动,其中大部分执行时间都花在等待输入/输出操作上,多线程是合适的。它适用于下载文件、使用API和操作文件等任务。由于Python的全局解释器锁(GIL),多线程可能无法显著加快CPU密集型活动的速度。

另一方面,多进程适用于涉及密集计算的CPU绑定任务。它通过利用多个进程,每个进程都有自己的内存空间,绕过了GIL的限制,实现真正的并行性。然而,它在内存消耗和进程间通信方面会产生额外的开销。

对于涉及网络操作的 I/O 密集型活动,使用 asyncio 等库执行的异步编程非常有用。它利用非阻塞 I/O 操作,以便作业可以继续进行,而不必等待每个操作完成。该方法有效地管理多个并发连接,使其适用于网络服务器开发、Web API 交互和网页抓取。异步编程最大限度地减少了 I/O 操作的等待时间,确保了响应能力和可扩展性。

结论

Python 的并行处理能力为提高需要复杂计算的任务的效率提供了机会。无论您选择使用多线程、多处理还是异步编程,Python 都提供了必要的工具和模块来有效利用并发性。通过理解活动的性质并选择适当的技术,您可以最大限度地发挥并行处理的优势并缩短执行时间。因此,继续探索并充分利用 Python 的并行性来创建更快、更高效的应用程序。

以上是在Python中的并行处理的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1659
14
CakePHP 教程
1416
52
Laravel 教程
1310
25
PHP教程
1258
29
C# 教程
1233
24
PHP和Python:解释了不同的范例 PHP和Python:解释了不同的范例 Apr 18, 2025 am 12:26 AM

PHP主要是过程式编程,但也支持面向对象编程(OOP);Python支持多种范式,包括OOP、函数式和过程式编程。PHP适合web开发,Python适用于多种应用,如数据分析和机器学习。

在PHP和Python之间进行选择:指南 在PHP和Python之间进行选择:指南 Apr 18, 2025 am 12:24 AM

PHP适合网页开发和快速原型开发,Python适用于数据科学和机器学习。1.PHP用于动态网页开发,语法简单,适合快速开发。2.Python语法简洁,适用于多领域,库生态系统强大。

PHP和Python:深入了解他们的历史 PHP和Python:深入了解他们的历史 Apr 18, 2025 am 12:25 AM

PHP起源于1994年,由RasmusLerdorf开发,最初用于跟踪网站访问者,逐渐演变为服务器端脚本语言,广泛应用于网页开发。Python由GuidovanRossum于1980年代末开发,1991年首次发布,强调代码可读性和简洁性,适用于科学计算、数据分析等领域。

Python vs. JavaScript:学习曲线和易用性 Python vs. JavaScript:学习曲线和易用性 Apr 16, 2025 am 12:12 AM

Python更适合初学者,学习曲线平缓,语法简洁;JavaScript适合前端开发,学习曲线较陡,语法灵活。1.Python语法直观,适用于数据科学和后端开发。2.JavaScript灵活,广泛用于前端和服务器端编程。

sublime怎么运行代码python sublime怎么运行代码python Apr 16, 2025 am 08:48 AM

在 Sublime Text 中运行 Python 代码,需先安装 Python 插件,再创建 .py 文件并编写代码,最后按 Ctrl B 运行代码,输出会在控制台中显示。

vscode在哪写代码 vscode在哪写代码 Apr 15, 2025 pm 09:54 PM

在 Visual Studio Code(VSCode)中编写代码简单易行,只需安装 VSCode、创建项目、选择语言、创建文件、编写代码、保存并运行即可。VSCode 的优点包括跨平台、免费开源、强大功能、扩展丰富,以及轻量快速。

visual studio code 可以用于 python 吗 visual studio code 可以用于 python 吗 Apr 15, 2025 pm 08:18 PM

VS Code 可用于编写 Python,并提供许多功能,使其成为开发 Python 应用程序的理想工具。它允许用户:安装 Python 扩展,以获得代码补全、语法高亮和调试等功能。使用调试器逐步跟踪代码,查找和修复错误。集成 Git,进行版本控制。使用代码格式化工具,保持代码一致性。使用 Linting 工具,提前发现潜在问题。

notepad 怎么运行python notepad 怎么运行python Apr 16, 2025 pm 07:33 PM

在 Notepad 中运行 Python 代码需要安装 Python 可执行文件和 NppExec 插件。安装 Python 并为其添加 PATH 后,在 NppExec 插件中配置命令为“python”、参数为“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通过快捷键“F6”运行 Python 代码。

See all articles