使用Python中的NRC词典进行情感分类
情绪识别或识别是一个人或一个物体感知环境中表现出的特定情绪并将其放入多种情绪类别之一的能力.
Python 中的情感分类是传统情感分析技术的可行替代方案,传统情感分析技术将单词或句子标记为积极或消极并分配它们相应地具有极性分数。
该算法背后的基本思想是模仿人类思维过程,它试图从文本中分割出描绘情感的单词。使用训练数据集执行分析,其中一组预设信息被输入到系统中,作为分类的基础。
这是基于 NLTK 库 中的 WordNet 同义词集和加拿大国家研究委员会 (NRC) 的情感词典的软件包,该词典已超过 27,000 个术语。
图书馆使用以下类别来衡量和分类单词的情感效果 -
恐惧
愤怒
期待
信任
惊喜
积极
负面
悲伤
厌恶
喜悦
安装步骤
第 1 步 - 在终端中使用 pip install 命令安装 NRC 模块。
pip install NRCLex
在 jupyter 中安装
笔记本和命令提示符通常遵循相同的步骤。在 MacO 中安装也遵循相同的命令。直接使用终端。
第 2 步 - 另外安装 textblob 和 nrclex 以避免遇到 MissingCorpusError
ul>
第 3 步 - 从 textblob 下载语料库
pip install textblob
python -m textblob.download_corpora
安装后,我们可以继续导入库并创建文本对象。
基本方法
1.原始文本到过滤后的文本(为了获得最佳结果,“文本”应该是 unicode)。
text_object.load_raw_text(text: str)
2.将标记化的单词列表转换为标记列表
text_object.load_token_list(list_of_tokens: list)
3.返回单词列表。
text_object.words
4。返回句子列表。
text_object.sentences
5。返回影响列表。
text_object.affect_list
6。返回影响字典。
text_object.affect_dict
7.返回原始情感计数。
text_object.raw_emotion_scores
8。返回最高的情绪。
text_object.top_emotions
9。返回频率。
Text_object.frequencies
在这里,我们使用 top_emotions 函数根据情感对单词列表进行分类。
算法
第 1 步 - 导入 nrclex 导入 nrclex
步骤 2 - 从 nrclex 导入 NRCLex
第 3 步 - 初始化您想要分类的字符串单词列表
步骤 4 - 对于范围 len(text) 内的 i
第 4 步 -情感 = NRCLex(text[i]) #为每个文本创建一个对象
第 5 步 -情感.top_emotions #对情感进行分类
示例
# Import module import nrclex from nrclex import NRCLex text = ['happy', 'beautiful', 'exciting', 'depressed'] # Iterate through list for i in range(len(text)): # call by object creation emotion = NRCLex(text[i]) # Classify emotion print('\n', text[i], ': ', emotion.top_emotions)
输出
innocent : [('trust', 0.5), ('positive', 0.5)] hate : [('fear', 0.2), ('anger', 0.2), ('negative', 0.2), ('sadness', 0.2), ('disgust', 0.2)] irritating : [('anger', 0.3333333333333333), ('negative', 0.3333333333333333), ('disgust', 0.3333333333333333)] annoying : [('anger', 0.5), ('negative', 0.5)]
算法
第 1 步 - 导入 nrclex
步骤 2 - 从 nrclex 导入 NRCLex
第 3 步 - 初始化您想要分类的字符串单词列表
步骤 4 - 对于范围 len(text) 内的 i
第 4 步 -情感 = NRCLex(text[i]) #为每个文本创建一个对象
第 5 步 -情感.top_emotions #对情感进行分类
示例
import nrclex from nrclex import NRCLex # Assign list of strings text = ['innocent','hate', 'irritating','annoying'] # Iterate through list for i in range(len(text)): # Create object emotion = NRCLex(text[i]) # Classify emotion print('\n\n', text[i], ': ', emotion.top_emotions)
输出
innocent : [('trust', 0.5), ('positive', 0.5)] hate : [('fear', 0.2), ('anger', 0.2), ('negative', 0.2), ('sadness', 0.2), ('disgust', 0.2)] irritating : [('anger', 0.3333333333333333), ('negative', 0.3333333333333333), ('disgust', 0.3333333333333333)] annoying : [('anger', 0.5), ('negative', 0.5)]
结论
NRC 情感词典广泛应用于研究和工业领域的情感分析和情感分类任务。这意味着有大量的用户和资源社区可用于支持和进一步开发。 NRCLex 还借助谷歌翻译,为全球 100 多种语言提供稳定的输出,成功打破了语言障碍。这在医疗保健领域有多种应用,可以帮助理解流行病应对措施。实际应用包括心理学和行为科学、假新闻检测和增强人机交互。
以上是使用Python中的NRC词典进行情感分类的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

PHP和Python各有优劣,选择取决于项目需求和个人偏好。1.PHP适合快速开发和维护大型Web应用。2.Python在数据科学和机器学习领域占据主导地位。

Python和JavaScript在社区、库和资源方面的对比各有优劣。1)Python社区友好,适合初学者,但前端开发资源不如JavaScript丰富。2)Python在数据科学和机器学习库方面强大,JavaScript则在前端开发库和框架上更胜一筹。3)两者的学习资源都丰富,但Python适合从官方文档开始,JavaScript则以MDNWebDocs为佳。选择应基于项目需求和个人兴趣。

Docker利用Linux内核特性,提供高效、隔离的应用运行环境。其工作原理如下:1. 镜像作为只读模板,包含运行应用所需的一切;2. 联合文件系统(UnionFS)层叠多个文件系统,只存储差异部分,节省空间并加快速度;3. 守护进程管理镜像和容器,客户端用于交互;4. Namespaces和cgroups实现容器隔离和资源限制;5. 多种网络模式支持容器互联。理解这些核心概念,才能更好地利用Docker。

在 VS Code 中,可以通过以下步骤在终端运行程序:准备代码和打开集成终端确保代码目录与终端工作目录一致根据编程语言选择运行命令(如 Python 的 python your_file_name.py)检查是否成功运行并解决错误利用调试器提升调试效率

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

VS Code可以在Windows 8上运行,但体验可能不佳。首先确保系统已更新到最新补丁,然后下载与系统架构匹配的VS Code安装包,按照提示安装。安装后,注意某些扩展程序可能与Windows 8不兼容,需要寻找替代扩展或在虚拟机中使用更新的Windows系统。安装必要的扩展,检查是否正常工作。尽管VS Code在Windows 8上可行,但建议升级到更新的Windows系统以获得更好的开发体验和安全保障。

VS Code 全称 Visual Studio Code,是一个由微软开发的免费开源跨平台代码编辑器和开发环境。它支持广泛的编程语言,提供语法高亮、代码自动补全、代码片段和智能提示等功能以提高开发效率。通过丰富的扩展生态系统,用户可以针对特定需求和语言添加扩展程序,例如调试器、代码格式化工具和 Git 集成。VS Code 还包含直观的调试器,有助于快速查找和解决代码中的 bug。

VS Code 可用于编写 Python,并提供许多功能,使其成为开发 Python 应用程序的理想工具。它允许用户:安装 Python 扩展,以获得代码补全、语法高亮和调试等功能。使用调试器逐步跟踪代码,查找和修复错误。集成 Git,进行版本控制。使用代码格式化工具,保持代码一致性。使用 Linting 工具,提前发现潜在问题。
