Equinix CIO利用AI技术探寻潜力合作伙伴的全球数据基础设施企业

WBOY
发布: 2023-09-12 12:21:02
转载
991 人浏览过

Equinix CIO利用AI技术探寻潜力合作伙伴的全球数据基础设施企业

跨国数据基础设施公司Equinix自2018年以来一直在利用机器学习技术。他们开展了一项使用机器学习概率模型来预测潜在客户购买Equinix产品可能性的计划。自该计划启动以来,已经为公司带来了数百万美元的收入贡献

自从项目启动以来,随着Equinix公司的发展,对于渠道合作伙伴在加速客户获取和扩张方面的依赖也在不断增加。因此,在2021年,Equinix对其商机平台进行了重新审视,并通过添加数据驱动的销售商机方法来进一步提升。同时,还利用人工智能来识别那些最适合帮助企业在全球以及特定地区和国家推动新销售的合作伙伴

在某些地区、部门和行业,Equinix的渠道合作伙伴具有独特的优势,可以满足客户对公正指导、集成解决方案和先进服务的需求。一个典型的例子是在联邦业务部门,确定具备必要许可和已经建立关系的合作伙伴至关重要

该公司首席信息官Milind Wagle表示:“释放人工智能的巨大潜力,为我们的业务带来切实的影响,这是我们IT组织的首要任务。其中一个完美的例子就是,为我们的渠道计划构建一个创新的、智能的、基于人工智能的商机引擎,这让我们能够结合人工智能技术的创新力量,为公司建立竞争市场差异化,并帮助改善我们客户和我们渠道合作伙伴的体验。”

这个计划被称为“AI驱动的合作伙伴商机”,它明确了通过Equinix直销、间接合作伙伴或渠道销售获得最佳服务的潜在客户。该计划有两个目标:确定最有潜力推动获得新客户的合作伙伴,并优先考虑那些预计将产生最高订购价值的合作伙伴

Equinix公司的人工智能战略和分析高级总监Ted Dangson表示:“这使得Equinix能够将投资和资源集中在最适合联合销售和转售的合作伙伴身上。”

该计划计划于今年9月中旬全面推出,通过审查模型结果和仪表板,展示数据科学如何帮助IT利用人工智能和机器学习更好地瞄准销售目标并提高收入

预测的力量

Equinix公司的高级首席数据科学家Ram Bala向我们介绍了他当前的工作任务

Bala表示:“Equinix在机会识别和合作伙伴优先级方面有独特的需求。全球有超过1300家技术供应商和服务提供商经过严格的审查流程才能成为Equinix的合作伙伴,并且在过去三年中,他们已经与Equinix达成了超过9000项交易。仅在美国就有很多机会和大量的RFP,因此必须确定与Equinix相关的RFP和联合销售合作伙伴。”

当杰克逊表示,通过应用适当的数据管理、倾向分析、机器学习和商业智能工具,他的团队在2021年发现,Equinix能够分析来自渠道合作伙伴和最终客户的数据,以确定哪些客户最适合直接通过Equinix获得服务,哪些最适合通过合作伙伴和经销商获得服务。此外,他们还能够将最终用户的需求与合作伙伴服务的亲和力和表面洞察力联系起来,帮助各方加速收入增长

Dangson的团队与Equinix合作伙伴以及联邦销售和营销团队紧密合作,寻找机会。他们首先寻找可能拥有可覆盖其用例的开箱即用解决方案供应商,但最终决定与Equinix的IT、数据科学和工程团队合作,自主构建一个定制的AI模型

Bala和他的数据科学家团队在这个项目中进行了大量的内部数据和第三方数据分析,以确定哪些数据集对于制定有效的合作伙伴优先数据科学策略至关重要

Bala表示:“我们利用与潜在客户和合作伙伴相关的公司统计和技术数据属性,依赖来自开源联邦数据库的历史政府合同和奖励数据,此外我们还对文本文档和PDF进行综合访问,其中提供了有关即将到来的机会和RFP的广泛信息。我们还从Equinix内部数据集中确定了类似客户和合作伙伴之间历史关联关系。”

接下来,团队开始建立机器学习模型,利用这些数据来:

  • 针对企业合作伙伴优先级制定全球和国家级评分及建议
  • 确定政府发起的与Equinix相关的数字化转型项目,并针对联邦机构的合作伙伴优先级制定国家级和机构级的评分和建议
  • 科学地验证现有合作伙伴,并确定新合作伙伴的优先顺序
  • 通过直接销售或者间接销售找出最好的最终潜在客户
  • 重新调整渠道销售目标,让合作伙伴能够激活潜在客户,展开数据驱动的销售工作。

Dangson表示,Equinix的合作伙伴商机平台利用自然语言处理算法从RFP文档中提取相关摘录,并附上每个商机的相关性评分。他指出,这些算法还为他们的建议提供了支持理由。 当森表示,Equinix的合作伙伴商机平台利用自然语言处理算法从RFP文档中提取相关摘录,并附上每个商机的相关性评分。他指出,这些算法还为他们的建议提供了支持理由

他说,这些额外的细节彻底改变了最终用户对模型预测的解释和利用方式,从而使得采用率逐渐上升,并取得了总体上的成功

巴拉表示,经验表明,该项目面临的最大挑战是训练机器学习模型所需的数据注释和标记不足的样本。由于缺乏注释数据,很难建立高精度且计算高效的模型来识别来自政府机构的Equinix相关RFP,而且标记不准确的样本导致难以训练机器学习模型以优先考虑企业销售的合作伙伴

为了解决这些问题,我们使用了来自不同学术和企业研究机构的技术。我们花了近四个月的时间开发了最小可行产品,并花了五个月的时间开发了可扩展的、可集成的端到端解决方案

交付与创新

在Equinix的报告中指出,部署了该解决方案后,最终用户认为这是一个关键工具,使他们的工作变得更轻松、更快速、更准确。根据2023年第二季度收益报告显示,Equinix的渠道计划占据了订购量的40%,并且几乎获得了新客户的60%

Bala认为,在推动数字化转型的过程中,通过AI驱动型合作伙伴商机的成功,关键在于在交付和创新之间取得平衡

我们的目标是创建一个充满创新和发展活力的环境,以实现我们提供可衡量的商业价值和最大化投资回报的目标。当我们在整个组织中传播这种创新文化时,我们开始看到变革性举措逐渐引起人们的兴趣并受到关注。在这个过程中,我们不仅培养了创造力并积极影响团队士气,而且还创造了一个将失败视为宝贵学习经验的环境

以上是Equinix CIO利用AI技术探寻潜力合作伙伴的全球数据基础设施企业的详细内容。更多信息请关注PHP中文网其他相关文章!

相关标签:
来源:51cto.com
本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板