1800亿参数,世界顶级开源大模型Falcon官宣!碾压LLaMA 2,性能直逼GPT-4
一夜之间,世界最强开源大模型Falcon 180B引爆全网!
1800亿参数,Falcon在3.5万亿token完成训练,直接登顶Hugging Face排行榜。
基准测试中,Falcon 180B在推理、编码、熟练度和知识测试各种任务中,一举击败Llama 2。
甚至,Falcon 180B能够与谷歌PaLM 2不差上下,性能直逼GPT-4。
不过,英伟达高级科学家Jim Fan对此表示质疑,
- Falcon-180B的训练数据中,代码只占5%。
而代码是迄今为止对提高推理能力、掌握工具使用和增强AI智能体最有用的数据。事实上,GPT-3.5是在Codex的基础上进行微调的。
- 没有编码基准数据。
没有代码能力,就不能声称「优于GPT-3.5」或「接近GPT-4」。它本应是预训练配方中不可或缺的一部分,而不是事后的微调。
- 对于参数大于30B的语言模型,是时候采用混合专家系统(MoE)了。到目前为止,我们只看到OSS MoE LLM
一起来看看,Falcon 180B究竟是什么来头?
世界最强开源大模型
此前,Falcon已经推出了三种模型大小,分别是1.3B、7.5B、40B。
官方介绍,Falcon 180B是40B的升级版本,由阿布扎比的全球领先技术研究中心TII推出,可免费商用。
这次,研究人员在基底模型上技术上进行了创新,比如利用Multi-Query Attention等来提高模型的可扩展性。
对于训练过程,Falcon 180B基于亚马逊云机器学习平台Amazon SageMaker,在多达4096个GPU上完成了对3.5万亿token的训练。
总GPU计算时,大约7,000,000个。
Falcon 180B的参数规模是Llama 2(70B)的2.5倍,而训练所需的计算量是Llama 2的4倍。
具体训练数据中,Falcon 180B主要是RefinedWe数据集(大约占85%) 。
此外,它还在对话、技术论文,以及一小部分代码等经过整理的混合数据的基础上进行了训练。
这个预训练数据集足够大,即使是3.5万亿个token也只占不到一个epoch。
官方自称,Falcon 180B是当前「最好」的开源大模型,具体表现如下:
在MMLU基准上,Falcon 180B的性能超过了Llama 2 70B和GPT-3.5。
在HellaSwag、LAMBADA、WebQuestions、Winogrande、PIQA、ARC、BoolQ、CB、COPA、RTE、WiC、WSC 及ReCoRD上,与谷歌的PaLM 2-Large不相上下。
另外,它在Hugging Face开源大模型榜单上,是当前评分最高(68.74分)的开放式大模型,超越了LlaMA 2(67.35)。
Falcon 180B上手可用
与此同时,研究人员还发布了聊天对话模型Falcon-180B-Chat。该模型在对话和指令数据集上进行了微调,数据集涵盖了Open-Platypus、UltraChat和Airoboros。
现在,每个人都可以进行demo体验。
地址:https://huggingface.co/tiiuae/falcon-180B-chat
Prompt 格式
基础模型没有Prompt格式,因为它并不是一个对话型大模型,也不是通过指令进行的训练,所以它并不会以对话形式回应。
预训练模型是微调的绝佳平台,但或许你不该直接使用。其对话模型则设有一个简单的对话模式。
System: Add an optional system prompt hereUser: This is the user inputFalcon: This is what the model generatesUser: This might be a second turn inputFalcon: and so on
Transformers
从Transfomers 4.33开始,Falcon 180B可以在Hugging Face生态中使用和下载。
确保已经登录Hugging Face账号,并安装了最新版本的transformers:
pip install --upgrade transformershuggingface-cli login
bfloat16
以下是如何在 bfloat16 中使用基础模型的方法。Falcon 180B是一个大模型,所以请注意它的硬件要求。
对此,硬件要求如下:
可以看出,若想对Falcon 180B进行全面微调,至少需要8X8X A100 80G,如果仅是推理的话,也得需要8XA100 80G的GPU。
from transformers import AutoTokenizer, AutoModelForCausalLMimport transformersimport torchmodel_id = "tiiuae/falcon-180B"tokenizer = AutoTokenizer.from_pretrained(model_id)model = AutoModelForCausalLM.from_pretrained(model_id,torch_dtype=torch.bfloat16,device_map="auto",)prompt = "My name is Pedro, I live in"inputs = tokenizer(prompt, return_tensors="pt").to("cuda")output = model.generate(input_ids=inputs["input_ids"],attention_mask=inputs["attention_mask"],do_sample=True,temperature=0.6,top_p=0.9,max_new_tokens=50,)output = output[0].to("cpu")print(tokenizer.decode(output)
可能会产生如下输出结果:
My name is Pedro, I live in Portugal and I am 25 years old. I am a graphic designer, but I am also passionate about photography and video.I love to travel and I am always looking for new adventures. I love to meet new people and explore new places.
使用8位和4位的bitsandbytes
此外,Falcon 180B的8位和4位量化版本在评估方面与bfloat16几乎没有差别!
这对推理来说是个好消息,因为用户可以放心地使用量化版本来降低硬件要求。
注意,在8位版本进行推理要比4位版本快得多。要使用量化,你需要安装「bitsandbytes」库,并在加载模型时启用相应的标志:
model = AutoModelForCausalLM.from_pretrained(model_id,torch_dtype=torch.bfloat16,**load_in_8bit=True,**device_map="auto",)
对话模型
如上所述,为跟踪对话而微调的模型版本,使用了非常直接的训练模板。我们必须遵循同样的模式才能运行聊天式推理。
作为参考,你可以看看聊天演示中的 [format_prompt] 函数:
def format_prompt(message, history, system_prompt):prompt = ""if system_prompt:prompt += f"System: {system_prompt}\n"for user_prompt, bot_response in history:prompt += f"User: {user_prompt}\n"prompt += f"Falcon: {bot_response}\n"prompt += f"User: {message}\nFalcon:"return prompt
从上可见,用户的交互和模型的回应前面都有 User: 和 Falcon: 分隔符。我们将它们连接在一起,形成一个包含整个对话历史的提示。这样,就可以提供一个系统提示来调整生成风格。
网友热评
对于Falcon 180B的真正实力,许多网友对此展开热议。
绝对难以置信。它击败了GPT-3.5,与谷歌的PaLM-2 Large不相上下。这简直改变游戏规则!
一位创业公司的CEO表示,我测试了Falcon-180B对话机器人,它并不比Llama2-70B聊天系统好。HF OpenLLM排行榜也显示了好坏参半的结果。考虑到它的规模更大,训练集也更多,这种情况令人惊讶。
举个栗子:
给出一些条目,让Falcon-180B和Llama2-70B分别回答,看看效果如何?
Falcon-180B误将马鞍算作动物。而Llama2-70B回答简洁,还给出了正确答案。
以上是1800亿参数,世界顶级开源大模型Falcon官宣!碾压LLaMA 2,性能直逼GPT-4的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

创建Oracle数据库,常用方法是使用dbca图形化工具,步骤如下:1. 使用dbca工具,设置dbName指定数据库名;2. 设置sysPassword和systemPassword为强密码;3. 设置characterSet和nationalCharacterSet为AL32UTF8;4. 设置memorySize和tablespaceSize根据实际需求调整;5. 指定logFile路径。 高级方法为使用SQL命令手动创建,但更复杂易错。 需要注意密码强度、字符集选择、表空间大小及内存

创建Oracle数据库并非易事,需理解底层机制。1. 需了解数据库和Oracle DBMS的概念;2. 掌握SID、CDB(容器数据库)、PDB(可插拔数据库)等核心概念;3. 使用SQL*Plus创建CDB,再创建PDB,需指定大小、数据文件数、路径等参数;4. 高级应用需调整字符集、内存等参数,并进行性能调优;5. 需注意磁盘空间、权限和参数设置,并持续监控和优化数据库性能。 熟练掌握需不断实践,才能真正理解Oracle数据库的创建和管理。

Oracle SQL语句的核心是SELECT、INSERT、UPDATE和DELETE,以及各种子句的灵活运用。理解语句背后的执行机制至关重要,如索引优化。高级用法包括子查询、连接查询、分析函数和PL/SQL。常见错误包括语法错误、性能问题和数据一致性问题。性能优化最佳实践涉及使用适当的索引、避免使用SELECT *、优化WHERE子句和使用绑定变量。掌握Oracle SQL需要实践,包括代码编写、调试、思考和理解底层机制。

MySQL 中字段操作指南:添加、修改和删除字段。添加字段:ALTER TABLE table_name ADD column_name data_type [NOT NULL] [DEFAULT default_value] [PRIMARY KEY] [AUTO_INCREMENT]修改字段:ALTER TABLE table_name MODIFY column_name data_type [NOT NULL] [DEFAULT default_value] [PRIMARY KEY]

Oracle 数据库的完整性约束可确保数据准确性,包括:NOT NULL:禁止空值;UNIQUE:保证唯一性,允许单个 NULL 值;PRIMARY KEY:主键约束,加强 UNIQUE,禁止 NULL 值;FOREIGN KEY:维护表间关系,外键引用主表主键;CHECK:根据条件限制列值。

嵌套查询是一种在一个查询中包含另一个查询的方式,主要用于检索满足复杂条件、关联多张表以及计算汇总值或统计信息的数据。实例示例包括:查找高于平均工资的雇员、查找特定类别的订单以及计算每种产品的总订购量。编写嵌套查询时,需要遵循:编写子查询、将其结果写入外层查询(使用别名或 AS 子句引用)、优化查询性能(使用索引)。

Oracle 是全球最大的数据库管理系统(DBMS)软件公司,其主要产品包括以下功能:关系数据库管理系统(Oracle 数据库)开发工具(Oracle APEX、Oracle Visual Builder)中间件(Oracle WebLogic Server、Oracle SOA Suite)云服务(Oracle Cloud Infrastructure)分析和商业智能(Oracle Analytics Cloud、Oracle Essbase)区块链(Oracle Blockchain Pla

本文介绍如何在Debian系统上自定义Apache的日志格式。以下步骤将指导您完成配置过程:第一步:访问Apache配置文件Debian系统的Apache主配置文件通常位于/etc/apache2/apache2.conf或/etc/apache2/httpd.conf。使用以下命令以root权限打开配置文件:sudonano/etc/apache2/apache2.conf或sudonano/etc/apache2/httpd.conf第二步:定义自定义日志格式找到或
