机器人 + LLM ≠ 具身智能?
机器之心PRO · 会员通讯 Week 36
---- 本周为您解读 ⑤个值得细品的 AI & Robotics 业内要事 ----
1. 机器人 + LLM ≠ 具身智能?
通用人形机器人+LLM技术路线的下一程是什么?通用机器人 + LLM 通往具身智能有哪几大技术挑战?在LLM爆火前,波士顿动力是怎么做机器人的?场景理解(Scene Understanding)和人机协作技术的突破将带来哪些机会?...
2. Llama 2 的开源生态,是馅饼还是陷阱?
Llama 2 带来的开源生态可靠吗?Baichuan-2 有望成为 Llama 2 的国产平替吗?开源LLM训练切片的意义何在?开源与闭源,国内大模型领域竞争格局是什么样的? Llama 2 的开源生态是否可靠?Baichuan-2 能否成为 Llama 2 的国产替代品?开源LLM训练切片的意义是什么?国内大模型领域的开源与闭源竞争格局如何?
3. RLAIF是一个靠谱的替代方案吗?用人工智能(AI)来取代人类(H)?
RLAIF 是如何实现的?AI 标注如何增强 RL?RALIF 的优势在哪?基于 RLAIF 训练的LLM表现如何?RLAIF 替代 RLHF 这事可行吗?未来还会需要 RLHF 吗?谷歌近期还有哪些关于 RL 研究?...
4. OpenAI 被爆秘密训练 GPT-5
GPT-5 有有八卦了?GPT-5 的功能传成什么样了?GPT-5 真的存在吗?Sam Altman 之前说没搞 GPT-5?...
5. AI 接管翻译工作用了几年?
西语网站编辑老师为何全部被「裁」?用 AI 翻译网站靠谱吗?从谷歌开始的 AI 翻译发展史了解一下?你记得十年前的 AI 翻译什么样吗?现在的 AI 翻译又要往哪发展? 为什么西语网站的编辑老师都被解雇了?使用人工智能翻译网站可靠吗?让我们来了解一下从谷歌开始的人工智能翻译的发展历程吧。你还记得十年前的人工智能翻译是什么样子的吗?现在的人工智能翻译将朝着哪个方向发展呢?
本期完整版通讯包括5个专题解读和29个AI和机器人赛道的要事速递。其中,有9个技术方面的要点,11个国内方面的要点,以及9个国外方面的要点
本期通讯总计 24646 字,可免费试读至 7 %
只需消耗99个微信豆即可兑换完整本期解读,相当于人民币9.9元
要事解读 ①机器人 + LLM ≠ 具身智能?
时间:9 月 6 日
事件:稚晖君近期于访谈中透露其创业团队的通用人形机器人+LLM 发展计划,包含建立数据中心和对硬件结构进行迭代重构。
稚晖君对关于通用人形机器人和LLM技术路线的下一步有何想法?
1、稚晖君于访谈中表示,在 LLM + 通用人形机器人这条具身智能技术路线中,核心门槛在于数据。智元机器人近期的工作重心之一是建立自己的数据中心。
稚晖君总结了他的数据工作将涉及到「监督学习数据」、「仿真数据」和「AIGC生成数据」
稚晖君表示,接下来的计划是在几个月内将临港落地,建立场景和仿真平台,用于填补运动数据,以增强机器人的泛化能力
2、智元机器人的另一个工作重点是以增强机器人的运动性能目标,对硬件结构进行迭代重构。
智元机器人目前表示,人形机器人的价格将控制在20万元以下
稚晖先生表示,如果无法达到20万元的价格,人形机器人将无法实现商业化落地
② 20 万元的估价可对比机器人代替新能源汽车制造业部分工人岗位所需要的 1-2 年投资回报期。
4、智元机器人团队为量产控制成本的方法涉及两方面:
采用自研路线,例如自研关节电机和灵巧手等核心部件,可以使成本减半
通过使用软件和算法来满足精度要求,从而降低硬件成本
稚晖君表示,他们的首要目标是在工业制造领域实现商业化落地,并计划在明年下半年实现这一目标
6、稚晖君还提到公司商业化的一条隐线,即:在走向通用人形机器人的终极目标的途中「沿途下蛋」。
① 通用人形机器人牵涉到最全面的机器人技术栈,其实现过程涉及多种前沿技术的研发和优化,可以催生多种专用形态的创新机器人产品。
国内除了智元机器人的远征A1,还有哪些团队在研发通用人形机器人?[6] [7]
通用机器人和LLM是否等同于具身智能呢?[2] [3] [26]
图灵奖获得者、中国科学院院士、清华大学交叉信息研究院院长姚期智在2023世界机器人大会中表示:未来的AGI需要有具身的实体,同真实的物理世界相交互来完成各种任务,这样才能给产业带来真正更大的价值。同时,姚期智指出,具身机器人目前遇到的主要有四大挑战:
1、机器人不能够像大语言模型一样有一个基础大模型直接一步到位,做到最底层的控制。
2、计算能力的挑战。即使谷歌研发的Robotics Transformer模型,要实现机器人控制,仍然需要进行许多改进
3、如何把机器人多模态的感官感知全部融合起来,仍面临诸多难题需要解决。
机器人的发展需要大量的数据收集,同时也面临着许多安全和隐私等问题
在 LLM 爆火之前,波士顿动力是怎么做机器人的?
2021年,波士顿动力的高级机器人工程师和Atlas感知软件开发负责人Pat Marion发表了一篇文章,对Atlas跑酷背后的技术进行了解读。[4]
Atlas实现卓越的跑酷能力主要涉及三个方面的技术:跑酷认知能力、Atlas行为库和模型预测控制
2、跑酷认知能力:包括使用先进的深度相机、感知算法和高级地图等组件
① Atlas 使用 TOF 深度相机以每秒 15 帧的速度生成环境的点云,点云是测距的大规模集合。
② TOF(Time of flight)直译为「飞行时间」。其测距原理是通过给目标连续发送光脉冲,然后用传感器接收从物体返回的光,通过探测光脉冲的飞行(往返)时间来得到目标物距离。
以上是机器人 + LLM ≠ 具身智能?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

模型上下文协议(MCP):AI和数据的通用连接器 我们都熟悉AI在日常编码中的作用。 REPLIT,GitHub副词,黑匣子AI和光标IDE只是AI如何简化我们的工作流程的几个示例。 但是想象一下

Microsoft的OmniparSer V2和Omnitool:用AI彻底改变GUI自动化 想象一下AI不仅理解,而且像经验丰富的专业人员一样与Windows 11界面进行互动。 Microsoft的OmniparSer V2和Omnitool使它成为RE

Vibe编码通过让我们使用自然语言而不是无尽的代码行创建应用程序来重塑软件开发的世界。受Andrej Karpathy等有远见的人的启发,这种创新的方法使Dev

革命性应用程序开发:深入研究替代代理 厌倦了使用复杂的开发环境和晦涩的配置文件搏斗? Replit Agent旨在简化将想法转换为功能应用程序的过程。 这个AI-P

这篇博客文章分享了我测试跑道ML的新ACT ONE动画工具的经验,涵盖其Web界面和Python API。虽然有希望,但我的结果比预期的不那么令人印象深刻。 想探索生成的AI吗? 在P中学习使用LLM

2025年2月,Generative AI又是一个改变游戏规则的月份,为我们带来了一些最令人期待的模型升级和开创性的新功能。从Xai的Grok 3和Anthropic的Claude 3.7十四行诗到Openai的G

Yolo(您只看一次)一直是领先的实时对象检测框架,每次迭代都在以前的版本上改善。最新版本Yolo V12引入了进步,可显着提高准确性

这项耗资5000亿美元的星际之门AI项目由OpenAI,Softbank,Oracle和Nvidia等科技巨头支持,并得到美国政府的支持,旨在巩固美国AI的领导力。 这项雄心勃勃
