毫末DriveGPT才是大模型'卷王”!主打一个'降本、增效、老司机”
2023年中国国际服务贸易交易会以“开放引领发展,合作共赢未来”为主题,在9月6日圆满落幕。在本届服贸会上,一批在人工智能、自动驾驶、卫星遥感等领域深耕多年的领军企业,展示了它们最新的科技成果,展示了它们迈向未来的步伐
国内自动驾驶独角兽企业毫末智行的数据智能科学家贺翔带来了《毫末DriveGPT雪湖·海若,驱动自动驾驶3.0时代加速到来》的主题演讲,并在会后接受了媒体的采访,针对大模型时代自动驾驶技术研究与应用探索为我们带来了全面解读
图片说明:毫末智行数据智能科学家贺翔(右)正在接受媒体采访
以下是采访的记录:
主持人:贺老师能不能给我们介绍一下,毫末智行在今年的服贸会给我们带来了什么样的成果和展示?
贺翔表示,今年我们最重要的成果之一是毫末智行在4月份发布的业界首个自动驾驶生成式大模型DriveGPT
主持人:DriveGPT?听上去跟驾驶有关系?
贺翔:是的,这是一个用于解决自动驾驶领域相关问题的AI大模型,我们称之为自动驾驶生成式预训练大模型DriveGPT
主持人:生成式预训练?预训练我们怎么理解?
贺翔说:大模型的技术细节是,首先要利用海量的司机驾驶行为数据在云端进行预训练。预训练就是先将模型训练一遍,训练完后得到一个模型的原型,然后再引入司机的接管数据。所谓接管数据,指的是每次在开启自动驾驶过程中,如果自动驾驶决策不够好,司机就会发生一次接管,例如踩下刹车或扶一下方向盘。这些接管数据相当于对我们自动驾驶决策的纠正。拿到这些数据后,就可以不断对模型进行纠偏,使得模型的驾驶效果越来越好。这是一个不断纠错、不断迭代的过程,以达到更好的自动驾驶效果
主持人:可以说是对我们传统自动驾驶的一个升级。重写后的内容如下: 主持人:可以说这是对我们传统的自动驾驶进行了一次升级
贺翔:对,可以说是一种技术的变革。我们可以简单的做个对比,传统自动驾驶的技术的开发模式是当自动驾驶发现一个问题的时候,一般都会去基于这个问题,从海量的数据里面找到跟这个问题相关的数据,成本是很高的。因为海量的数据里面想要找到你要的数据没那么容易。找到这个数据之后,接下来要做的就是要把这一堆数据给标注公司,由人工的方式在这里面把问题标注出来,标注完了之后,再用这个数据去训练一个小的模型,这个模型训练完之后,再放到车上。至此这辆汽车就具备了解决这个问题的能力,我们把这种模式叫做小数据、小模型,属于“问题驱动”。
在DriveGPT这种大模型的模式之下,整个开发模式就不一样了。DriveGPT加持之下,现在的开发模式是先用海量的数据、老司机的数据、驾驶行为来进行预训练,得到一个初步的模型,这个模型就具备了驾驶的能力。当我们在自动驾驶的过程中一旦发现问题,这个司机就会发生一次接管,这个接管就相当于对驾驶决策做了一次纠正,基于这种纠正的数据再传回来纠正原来的预训练大模型,这样的数据闭环建立起来之后,这个模型的效果就会每天都在不断的进化、不断的提升。我们把这种开发模式叫做大数据、大模型,属于“数据驱动”。这是一种变革性的提升。
主持人:我们可以观察到目前自动驾驶技术的水平大约是L2级别,而现在大多数车辆已经达到了L2.5级别
贺翔: L2+,我们叫高阶辅助驾驶。
主持人:基于大模型DriveGPT的加持之下,我们可以达到什么样的水平?
贺翔:应该还是在高阶辅助驾驶阶段。我们大模型,主要是产生了两个业务价值。
第一个业务价值是在整个云端。传统的自动驾驶开发模式需要将其迁移到云端,这会带来非常高的成本,需要进行大量的数据筛选,尤其是需要人工参与和大量的人工标注。然而,有了大模型之后,整个数据的筛选、标注以及数据的生成都可以实现全自动化,这对成本的降低非常有效
举例来说,在标注领域,自动驾驶公司以往每年用于做标注的成本肯定高达数亿元,有了DriveGPT之后,可以对图片或者视频做自动化的标注,如果做视频标注或者4D Clips标注,大概能降低98%成本。即使只对单张图片做标注,成本也可以降低90%。云端的成本能得到大幅度的降低。
第二个业务价值是在车端,效果能够得到大幅度的提升。模型是基于海量的数据训练出来的,海量的数据就相当于我们的模型看过了非常非常多的数据,各种各样的场景它都见过,见多识广它的能力就越强。这种能力叫做模型或者AI的泛化能力。有了泛化能力之后,自动驾驶的效果也会更好。
此外,整个模型是基于“老司机”的驾驶行为数据训练的,是质量非常高的数据,它的整个驾驶效果或者驾驶的体感会更接近“老司机”。用户在使用的过程中会觉得驾驶体感或者说体验会更好。
第三点,我们的大型模型具有一种特殊的能力,即能够输出驾驶决策的理由。例如,当采取“踩一下刹车”或者“打了一下方向盘”这样的驾驶决策时,我们的模型能够解释为什么要这样做。如果能够提供这样的解释,智能驾驶车辆与用户之间就能够建立起很好的信任关系,用户在使用自动驾驶产品时会更加放心
通过基于大型模型和数据闭环的不断迭代,目前的高级辅助驾驶仍然需要司机随时接管。未来希望通过持续的迭代升级,逐渐实现真正的无人驾驶
主持人:从这个角度来看,不仅降低了成本,还提高了效率
贺翔说:“不需要司机一次又一次地自己去试错,大数据可以帮忙解决这个问题。它可以收集所有司机的接管行为,从而一次性解决所有的问题。这样,驾驶效果的提升速度会非常快。”
以上是毫末DriveGPT才是大模型'卷王”!主打一个'降本、增效、老司机”的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

但可能打不过公园里的老大爷?巴黎奥运会正在如火如荼地进行中,乒乓球项目备受关注。与此同时,机器人打乒乓球也取得了新突破。刚刚,DeepMind提出了第一个在竞技乒乓球比赛中达到人类业余选手水平的学习型机器人智能体。论文地址:https://arxiv.org/pdf/2408.03906DeepMind这个机器人打乒乓球什么水平呢?大概和人类业余选手不相上下:正手反手都会:对手采用多种打法,该机器人也能招架得住:接不同旋转的发球:不过,比赛激烈程度似乎不如公园老大爷对战。对机器人来说,乒乓球运动

8月21日,2024世界机器人大会在北京隆重召开。商汤科技旗下家用机器人品牌“元萝卜SenseRobot”家族全系产品集体亮相,并最新发布元萝卜AI下棋机器人——国际象棋专业版(以下简称“元萝卜国象机器人”),成为全球首个走进家庭的国际象棋机器人。作为元萝卜的第三款下棋机器人产品,全新的国象机器人在AI和工程机械方面进行了大量专项技术升级和创新,首次在家用机器人上实现了通过机械爪拾取立体棋子,并进行人机对弈、人人对弈、记谱复盘等功能,

开学将至,该收心的不止有即将开启新学期的同学,可能还有AI大模型。前段时间,Reddit上挤满了吐槽Claude越来越懒的网友。「它的水平下降了很多,经常停顿,甚至输出也变得很短。在发布的第一周,它可以一次性翻译整整4页文稿,现在连半页都输出不了了!」https://www.reddit.com/r/ClaudeAI/comments/1by8rw8/something_just_feels_wrong_with_claude_in_the/在一个名为「对Claude彻底失望了的帖子里」,满满地

正在北京举行的世界机器人大会上,人形机器人的展示成为了现场绝对的焦点,在星尘智能的展台上,由于AI机器人助理S1在一个展区上演扬琴、武术、书法三台大戏,能文能武,吸引了大量专业观众和媒体的驻足。在带弹性的琴弦上的优雅演奏,让S1展现出速度、力度、精度兼具的精细操作和绝对掌控。央视新闻对「书法」背后的模仿学习和智能控制进行了专题报道,公司创始人来杰解释到,丝滑动作的背后,是硬件侧追求最好力控和最仿人身体指标(速度、负载等),而是在AI侧则采集人的真实动作数据,让机器人遇强则强,快速学习进化。而敏捷

本届ACL大会,投稿者「收获满满」。为期六天的ACL2024正在泰国曼谷举办。ACL是计算语言学和自然语言处理领域的顶级国际会议,由国际计算语言学协会组织,每年举办一次。一直以来,ACL在NLP领域的学术影响力都位列第一,它也是CCF-A类推荐会议。今年的ACL大会已是第62届,接收了400余篇NLP领域的前沿工作。昨天下午,大会公布了最佳论文等奖项。此次,最佳论文奖7篇(两篇未公开)、最佳主题论文奖1篇、杰出论文奖35篇。大会还评出了资源论文奖(ResourceAward)3篇、社会影响力奖(

今天下午,鸿蒙智行正式迎来了新品牌与新车。 8月6日,华为举行鸿蒙智行享界S9及华为全场景新品发布会,带来了全景智慧旗舰轿车享界S9、问界新M7Pro和华为novaFlip、MatePadPro12.2英寸、全新MatePadAir、华为毕升激光打印机X1系列、FreeBuds6i、WATCHFIT3和智慧屏S5Pro等多款全场景智慧新品,从智慧出行、智慧办公到智能穿戴,华为全场景智慧生态持续构建,为消费者带来万物互联的智慧体验。鸿蒙智行:深度赋能,推动智能汽车产业升级华为联合中国汽车产业伙伴,为

会议简介随着科技的飞速发展,人工智能已经成为了推动社会进步的重要力量。在这个时代,我们有幸见证并参与到分布式人工智能(DistributedArtificialIntelligence,DAI)的创新与应用中。分布式人工智能是人工智能领域的重要分支,这几年引起了越来越多的关注。基于大型语言模型(LLM)的智能体(Agent)异军突起,通过结合大模型的强大语言理解和生成能力,展现出了在自然语言交互、知识推理、任务规划等方面的巨大潜力。AIAgent正在接棒大语言模型,成为当前AI圈的热点话题。Au

视觉与机器人学习的深度融合。当两只机器手丝滑地互相合作叠衣服、倒茶、将鞋子打包时,加上最近老上头条的1X人形机器人NEO,你可能会产生一种感觉:我们似乎开始进入机器人时代了。事实上,这些丝滑动作正是先进机器人技术+精妙框架设计+多模态大模型的产物。我们知道,有用的机器人往往需要与环境进行复杂精妙的交互,而环境则可被表示成空间域和时间域上的约束。举个例子,如果要让机器人倒茶,那么机器人首先需要抓住茶壶手柄并使之保持直立,不泼洒出茶水,然后平稳移动,一直到让壶口与杯口对齐,之后以一定角度倾斜茶壶。这
