听我说,Transformer它就是个支持向量机
Transformer 是一个支持向量机(SVM)一种新型理论在学界引发了人们的讨论。
上周末,一篇来自宾夕法尼亚大学、加州大学河滨分校的论文试图研究大模型基础 Transformer 结构的原理,其在注意力层的优化几何与将最优输入 token 与非最优 token 分开的硬边界 SVM 问题之间建立了形式等价。
在 hackernews 上作者表示,这种理论解决了 SVM 将每个输入序列中的「好」标记与「坏」token 分开的问题。该 SVM 作为一个性能优异的 token 选择器,与传统为输入分配 0-1 标签的 SVM 本质上不同。
这种理论也解释了注意力如何通过 softmax 引起稀疏性:落在 SVM 决策边界错误一侧的「坏」token 被 softmax 函数抑制,而「好」token 是那些最终具有非零 softmax 概率的 token。还值得一提的是,这个 SVM 源于 softmax 的指数性质。
论文上传到 arXiv 上面之后,人们纷纷发表意见,有人表示:AI 研究的方向真是螺旋上升,难道又要绕回去了?
绕了一圈,支持向量机还是没有过时。
自经典论文《Attention is All You Need》问世以来,Transformer 架构已为自然语言处理(NLP)领域带来了革命性进展。Transformer 中的注意力层接受一系列输入 token X,并通过计算 评估 token 之间的相关性,其中 (K, Q) 是可训练的 key-query 参数,最终有效捕获远程依赖关系。
现在,一篇名为《Transformers as Support Vector Machines》的新论文在自注意力的优化几何和 hard-margin SVM 问题之间建立了一种形式等价,使用 token 对的外积线性约束将最优输入 token 与非最优 token 分开。
论文链接:https://arxiv.org/pdf/2308.16898.pdf
这种形式等价建立在 Davoud Ataee Tarzanagh 等人的论文《Max-Margin Token Selection in Attention Mechanism》的基础上,它能够描述通过梯度下降进行优化的 1 层 transformer 的隐式偏差(implicit bias):
(1) 优化由 (K, Q) 参数化的注意力层,通过消失正则化(vanishing regularization),收敛到一种 SVM 解决方案,其中最小化组合参数 的核范数(nuclear norm)。相反,直接通过 W 进行参数化可以最小化 Frobenius 范数 SVM 目标。该论文描述了这种收敛,并强调它可以发生在局部最优方向而不是全局最优方向。
(2) 该论文还证明了 W 参数化在适当的几何条件下梯度下降的局部 / 全局方向收敛。重要的是,过度参数化通过确保 SVM 问题的可行性和保证没有驻点(stationary points)的良性优化环境来催化全局收敛。
(3) 虽然该研究的理论主要适用于线性预测头,但研究团队提出了一种更通用的 SVM 等价物,可以预测具有非线性头 / MLP 的 1 层 transformer 的隐式偏差。
总的来说,该研究的结果适用于一般数据集,可以扩展到交叉注意力层,并且研究结论的实际有效性已经通过彻底的数值实验得到了验证。该研究建立一种新的研究视角,将多层 transformer 看作分离和选择最佳 token 的 SVM 层次结构。
具体来说,给定长度为 T,嵌入维度为 d 的输入序列 ,该研究分析核心交叉注意力和自注意力模型:
其中,K、Q、V 分别是可训练的键、查询、值矩阵,;S (・) 表示 softmax 非线性,它逐行应用于
。该研究假设将 Z 的第一个 token(用 z 表示)用于预测。具体来说,给定一个训练数据集
,
,
,该研究使用递减损失函数
进行最小化:
这里,h (・) : 是包含值权重 V 的预测头。在这种表述中,模型 f (・) 精确地表示了一个单层 transformer,其中注意力层之后是一个 MLP。作者通过设置
来恢复 (2) 中的自注意力,其中 x_i 表示序列 X_i 的第一个 token。由于 softmax 运算的非线性性质,它给优化带来了巨大挑战。即使预测头是固定和线性的,该问题也是非凸和非线性的。在本研究中,作者将重点放在优化注意力权重(K、Q 或 W)上,并克服这些挑战,从而建立 SVM 的基本等价性。
论文结构如下:第 2 章介绍了自注意力和优化的初步知识;第 3 章分析了自注意力的优化几何,表明注意力参数 RP 收敛到最大边际解;第 4 章和第 5 章分别介绍了全局和局部梯度下降分析,表明 key-query 变量 W 向 (Att-SVM) 的解决方案收敛;第 6 章提供了在非线性预测头和广义 SVM 等价性方面的结果;第 7 章将理论扩展到顺序预测和因果预测;第 8 章讨论了相关文献。最后,第 9 章进行总结,提出开放性问题和未来研究方向。
论文的主要内容如下:
注意力层的内隐偏差(第 2-3 章)
正则化消失的情况下优化注意力参数(K, Q),会在方向上收敛到的最大边际解,其核范数目标是组合参数
。在直接用组合参数 W 对交叉注意力进行参数化的情况下,正则化路径 (RP) 定向收敛于以 Frobenius 范数为目标的(Att-SVM)解。
这是第一个正式区分 W 与(K,Q)参数化优化动态的结果,揭示了后者的低阶偏差。该研究的理论清楚地描述了所选 token 的最优性,并自然地扩展到了序列到序列或因果分类设置。
梯度下降的收敛(第 4-5 章)
通过适当的初始化和线性头 h (・),组合 key-query 变量 W 的梯度下降(GD)迭代在方向上收敛到(Att-SVM)的局部最优解(第 5 节)。要实现局部最优,所选 token 必须比相邻 token 得分更高。
局部最优方向不一定是唯一的,可以根据问题的几何特征来确定 [TLZO23]。作为一项重要贡献,作者确定了保证向全局最优方向收敛的几何条件(第 4 章)。这些条件包括:
- 最佳 token 在分数上有明显区别;
- 初始梯度方向与最佳 token 一致。
除此以外,论文还展示了过度参数化(即维度 d 较大,以及同等条件)通过确保(1)(Att-SVM)的可行性,以及(2)良性优化 landscape(即不存在静止点和虚假的局部最优方向)来催化全局收敛(见第 5.2 节)。
图 1 和图 2 对此进行了说明。
SVM 等价的通用性(第 6 章)
当使用线性 h (・) 进行优化时,注意力层会固有地偏向于从每个序列中选择一个 token(又称硬注意力)。这反映在了 (Att-SVM) 中,表现为输出 token 是输入 token 的凸组合。与此相反,作者表明非线性头必须由多个 token 组成,从而突出了它们在 transformer 动态过程中的重要性(第 6.1 节)。利用从理论中获得的洞察力,作者提出了一种更通用的 SVM 等价方法。
值得注意的是,他们证明了在理论未涵盖的普遍情况下(例如,h (・) 是一个 MLP),本文的方法能准确预测通过梯度下降训练的注意力的隐含偏差。具体来说,本文的通用公式将注意力权重解耦为两个部分:一个是由 SVM 控制的定向部分,它通过应用 0-1 掩码来选择标记;另一个是有限部分,它通过调整 softmax 概率来决定所选 token 的精确组成。
这些发现的一个重要特点是,它们适用于任意数据集(只要 SVM 可行),并且可以用数字验证。作者通过实验广泛验证了 transformer 的最大边际等价性和隐含偏差。作者认为,这些发现有助于理解作为分层最大边际 token 选择机制的 transformer,可为即将开展的有关其优化和泛化动态的研究奠定基础。
以上是听我说,Transformer它就是个支持向量机的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

0.这篇文章干了啥?提出了DepthFM:一个多功能且快速的最先进的生成式单目深度估计模型。除了传统的深度估计任务外,DepthFM还展示了在深度修复等下游任务中的最先进能力。DepthFM效率高,可以在少数推理步骤内合成深度图。下面一起来阅读一下这项工作~1.论文信息标题:DepthFM:FastMonocularDepthEstimationwithFlowMatching作者:MingGui,JohannesS.Fischer,UlrichPrestel,PingchuanMa,Dmytr

想象一下,一个人工智能模型,不仅拥有超越传统计算的能力,还能以更低的成本实现更高效的性能。这不是科幻,DeepSeek-V2[1],全球最强开源MoE模型来了。DeepSeek-V2是一个强大的专家混合(MoE)语言模型,具有训练经济、推理高效的特点。它由236B个参数组成,其中21B个参数用于激活每个标记。与DeepSeek67B相比,DeepSeek-V2性能更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,最大生成吞吐量提高到5.76倍。DeepSeek是一家探索通用人工智

AI,的确正在改变数学。最近,一直十分关注这个议题的陶哲轩,转发了最近一期的《美国数学学会通报》(BulletinoftheAmericanMathematicalSociety)。围绕「机器会改变数学吗?」这个话题,众多数学家发表了自己的观点,全程火花四射,内容硬核,精彩纷呈。作者阵容强大,包括菲尔兹奖得主AkshayVenkatesh、华裔数学家郑乐隽、纽大计算机科学家ErnestDavis等多位业界知名学者。AI的世界已经发生了天翻地覆的变化,要知道,其中很多文章是在一年前提交的,而在这一

波士顿动力Atlas,正式进入电动机器人时代!昨天,液压Atlas刚刚「含泪」退出历史舞台,今天波士顿动力就宣布:电动Atlas上岗。看来,在商用人形机器人领域,波士顿动力是下定决心要和特斯拉硬刚一把了。新视频放出后,短短十几小时内,就已经有一百多万观看。旧人离去,新角色登场,这是历史的必然。毫无疑问,今年是人形机器人的爆发年。网友锐评:机器人的进步,让今年看起来像人类的开幕式动作、自由度远超人类,但这真不是恐怖片?视频一开始,Atlas平静地躺在地上,看起来应该是仰面朝天。接下来,让人惊掉下巴

本月初,来自MIT等机构的研究者提出了一种非常有潜力的MLP替代方法——KAN。KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。KAN与MLP一样具有强大的数学基础,MLP基于通用逼近定理,而KAN基于Kolmogorov-Arnold表示定理。如下图所示,KAN在边上具

在iPhone上面临滞后,缓慢的移动数据连接?通常,手机上蜂窝互联网的强度取决于几个因素,例如区域、蜂窝网络类型、漫游类型等。您可以采取一些措施来获得更快、更可靠的蜂窝互联网连接。修复1–强制重启iPhone有时,强制重启设备只会重置许多内容,包括蜂窝网络连接。步骤1–只需按一次音量调高键并松开即可。接下来,按降低音量键并再次释放它。步骤2–该过程的下一部分是按住右侧的按钮。让iPhone完成重启。启用蜂窝数据并检查网络速度。再次检查修复2–更改数据模式虽然5G提供了更好的网络速度,但在信号较弱

哭死啊,全球狂炼大模型,一互联网的数据不够用,根本不够用。训练模型搞得跟《饥饿游戏》似的,全球AI研究者,都在苦恼怎么才能喂饱这群数据大胃王。尤其在多模态任务中,这一问题尤为突出。一筹莫展之际,来自人大系的初创团队,用自家的新模型,率先在国内把“模型生成数据自己喂自己”变成了现实。而且还是理解侧和生成侧双管齐下,两侧都能生成高质量、多模态的新数据,对模型本身进行数据反哺。模型是啥?中关村论坛上刚刚露面的多模态大模型Awaker1.0。团队是谁?智子引擎。由人大高瓴人工智能学院博士生高一钊创立,高

最近,军事圈被这个消息刷屏了:美军的战斗机,已经能由AI完成全自动空战了。是的,就在最近,美军的AI战斗机首次公开,揭开了神秘面纱。这架战斗机的全名是可变稳定性飞行模拟器测试飞机(VISTA),由美空军部长亲自搭乘,模拟了一对一的空战。5月2日,美国空军部长FrankKendall在Edwards空军基地驾驶X-62AVISTA升空注意,在一小时的飞行中,所有飞行动作都由AI自主完成!Kendall表示——在过去的几十年中,我们一直在思考自主空对空作战的无限潜力,但它始终显得遥不可及。然而如今,
