目录
结论
首页 科技周边 人工智能 Transformer的上下文学习能力的来源是什么?

Transformer的上下文学习能力的来源是什么?

Sep 18, 2023 am 08:01 AM
人工智能 数据

为什么 transformer 性能这么好?它给众多大语言模型带来的上下文学习 (In-Context Learning) 能力是从何而来?在人工智能领域里,transformer 已成为深度学习中的主导模型,但人们对于它卓越性能的理论基础却一直研究不足。

最近,谷歌AI、苏黎世联邦理工学院和谷歌DeepMind的研究人员进行了一项新研究,试图揭开谷歌AI中的一些优化算法的秘密。在这项研究中,他们对transformer进行了逆向工程,并找到了一些优化方法。这篇论文名为《揭示transformer中的Mesa优化算法》

Transformer的上下文学习能力的来源是什么?

论文链接:https://arxiv.org/abs/2309.05858

作者证明,最小化通用自回归损失会产生在 Transformer 的前向传递中运行的基于辅助梯度的优化算法。这种现象最近被称为「mesa 优化(mesa-optimization)」。此外,研究人员发现所得的 mesa 优化算法表现出上下文中的小样本学习能力,与模型规模无关。因此,新的结果对此前大语言模型中出现的小样本学习的原理进行了补充。

研究人员认为,Transformers 的成功是基于其在前向传递中实现的Mesa优化算法的架构偏差:(i) 定义内部学习目标,以及 (ii) 对其进行优化

Transformer的上下文学习能力的来源是什么?

图 1:新假设的说明:优化自回归 Transformer fθ 的权重 θ 会产生在模型前向传播中实现的 mesa 优化算法。作为输入序列 s_1, . 。。, s_t 被处理到时间步 t,Transformer (i) 创建一个由输入 - 目标关联对组成的内部训练集,(ii) 通过结果数据集定义内部目标函数,用于衡量内部模型的性能 使用权重 W,(iii) 优化该目标并使用学习的模型生成未来的预测Transformer的上下文学习能力的来源是什么?

该研究的贡献包括以下几点:

  • 概括了 von Oswald 等人的理论,并展示了从理论上,Transformers 是如何通过使用基于梯度的方法优化内部构建的目标来自回归预测序列下一个元素的。
  • 通过实验对在简单序列建模任务上训练的 Transformer 进行了逆向工程,并发现强有力的证据表明它们的前向传递实现了两步算法:(i) 早期自注意力层通过分组和复制标记构建内部训练数据集,因此隐式地构建内部训练数据集。定义内部目标函数,(ii) 更深层次优化这些目标以生成预测。
  • 与 LLM 类似,实验表明简单的自回归训练模型也可以成为上下文学习者,而即时调整对于改善 LLM 的上下文学习至关重要,也可以提高特定环境中的表现。
  • 受发现注意力层试图隐式优化内部目标函数的启发,作者引入了 mesa 层,这是一种新型注意力层,可以有效地解决最小二乘优化问题,而不是仅采取单个梯度步骤来实现最优。实验证明单个 mesa 层在简单的顺序任务上优于深度线性和 softmax 自注意力 Transformer,同时提供更多的可解释性。

Transformer的上下文学习能力的来源是什么?


  • 在初步的语言建模实验后发现,用 mesa 层替换标准的自注意力层获得了有希望的结果,证明了该层具有强大的上下文学习能力。

基于最近人们的工作表明,经过明确训练来解决上下文中的小样本任务的 transformer 可以实现梯度下降(GD)算法。在这里,作者展示了这些结果可以推广到自回归序列建模 —— 这是训练 LLM 的典型方法。

首先,对于在简单线性动力学上进行训练的Transformer进行分析。在这种情况下,每个序列都由不同的W*生成,以防止跨序列记忆。在这个简单的设定中,研究人员展示了Transformer如何创建mesa数据集,并使用预处理的GD来优化mesa目标

Transformer的上下文学习能力的来源是什么?

进行重写的内容是:我们可以通过训练深度 transformer 来聚合相邻序列元素的 token 结构。有趣的是,这种简单的预处理方法会导致权重矩阵非常稀疏(只有不到 1% 的权重非零),从而产生逆向工程算法

Transformer的上下文学习能力的来源是什么?

对于单层线性自注意力,权重对应一个梯度下降步骤。对于深度Transformer,解释性变得困难。该研究依赖于线性探测并检查隐藏激活是否能够预测自回归目标或预处理输入

有趣的是,两种探测方法的可预测性都会随着网络深度的增加而逐渐提高。这一发现表明模型中隐藏着预处理的 GD。

Transformer的上下文学习能力的来源是什么?

图 2:对经过训练的线性自注意力层进行逆向工程。

该研究发现,在构建中使用所有自由度时,可以完美地拟合训练层,不仅包括学习的学习率 η,还包括一组学习的初始权重 W_0。重要的是,如图 2 所示,学得的 one-step 算法的性能仍然远远优于单个 mesa 层。

在简单的权重设置下,我们可以注意到,通过基础优化很容易发现,该层可以最优地解决此研究任务。这个结果证明了硬编码归纳偏差对于mesa优化是有利的

凭借对多层案例的理论见解,先分析深度线性和 softmax 仅注意 Transformer。作者根据 4 通道结构设置输入格式,Transformer的上下文学习能力的来源是什么?,这对应于选择 W_0 = 0。

与单层模型一样,作者在训练模型的权重中看到了清晰的结构。作为第一个逆向工程分析,该研究利用这个结构并构建一个算法(RevAlg-d,其中 d 表示层数),每个层头包含 16 个参数(而不是 3200 个)。作者发现这种压缩但复杂的表达式可以描述经过训练的模型。特别是,它允许以几乎无损的方式在实际 Transformer 和 RevAlg-d 权重之间进行插值

虽然 RevAlg-d 表达式解释了具有少量自由参数的经过训练的多层 Transformer,但很难将其解释为 mesa 优化算法。因此,作者采用线性回归探测分析(Alain & Bengio,2017;Akyürek et al.,2023)来寻找假设的 mesa 优化算法的特征。

在图3中展示的深度线性自注意力Transformer上,我们可以观察到两个探针都能够进行线性解码,并且随着序列长度和网络深度的增加,解码性能也增加。因此,我们发现了一种基础优化算法,该算法在原始的mesa-objective Lt (W)的基础上逐层下降,同时改善了mesa优化问题的条件数。这导致mesa-objective Lt (W)快速下降。此外,我们还可以观察到随着深度增加,性能显著提高

通过对数据进行更好的预处理,可以逐步(跨层)优化自回归目标函数 Lt (W),因此可以认为快速下降是通过这种优化实现的

Transformer的上下文学习能力的来源是什么?

图 3:对构建的 token 输入进行逆向工程的多层 Transformer 训练。

这表明,如果 transformer 在构建的 token 上进行训练,它就会通过 mesa 优化进行预测。有趣的是,当直接给出序列元素时,transformer 会自行通过对元素进行分组来构造 token,研究团队将其称为「创建 mesa 数据集」。

Transformer的上下文学习能力的来源是什么?

结论

这项研究的发现是,当使用Transformer模型在标准自回归目标下进行序列预测任务的训练时,可以开发出基于梯度的推理算法。因此,最新的多任务和元学习结果也可以应用到传统的自监督LLM训练设置中

此外,研究还发现,学习得到的自回归推理算法可以在不需要重新训练的情况下重新调整使用,以解决有监督的上下文学习任务,从而在一个统一的框架内解释结果

Transformer的上下文学习能力的来源是什么?

那么,这些与上下文学习有什么关系呢?根据该研究,训练transformer模型后,在自回归序列任务上,它实现了适当的mesa优化,因此可以进行少样本上下文学习,而无需进行任何微调

Transformer的上下文学习能力的来源是什么?

该研究假设 LLM 也存在 mesa 优化,从而提高了其上下文学习能力。有趣的是,该研究还观察到,为 LLM 有效调整 prompt 也可以带来上下文学习能力的实质性改进。

Transformer的上下文学习能力的来源是什么?


Transformer的上下文学习能力的来源是什么?

感兴趣的读者可以阅读论文原文,了解更多研究内容。

以上是Transformer的上下文学习能力的来源是什么?的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
2 周前 By 尊渡假赌尊渡假赌尊渡假赌
仓库:如何复兴队友
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island冒险:如何获得巨型种子
4 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 Jun 28, 2024 am 03:51 AM

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

使用Rag和Sem-Rag提供上下文增强AI编码助手 使用Rag和Sem-Rag提供上下文增强AI编码助手 Jun 10, 2024 am 11:08 AM

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

七个很酷的GenAI & LLM技术性面试问题 七个很酷的GenAI & LLM技术性面试问题 Jun 07, 2024 am 10:06 AM

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 Jun 11, 2024 pm 03:57 PM

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 Jul 25, 2024 am 06:42 AM

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 Jul 17, 2024 pm 06:37 PM

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

你所不知道的机器学习五大学派 你所不知道的机器学习五大学派 Jun 05, 2024 pm 08:51 PM

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

70B模型秒出1000token,代码重写超越GPT-4o,来自OpenAI投资的代码神器Cursor团队 70B模型秒出1000token,代码重写超越GPT-4o,来自OpenAI投资的代码神器Cursor团队 Jun 13, 2024 pm 03:47 PM

70B模型,秒出1000token,换算成字符接近4000!研究人员将Llama3进行了微调并引入加速算法,和原生版本相比,速度足足快出了快了13倍!不仅是快,在代码重写任务上的表现甚至超越了GPT-4o。这项成果,来自爆火的AI编程神器Cursor背后团队anysphere,OpenAI也参与过投资。要知道在以快着称的推理加速框架Groq上,70BLlama3的推理速度也不过每秒300多token。 Cursor这样的速度,可以说是实现了近乎即时的完整代码文件编辑。有人直呼好家伙,如果把Curs

See all articles