PHP实现简单线性回归之数据研究工具_PHP
简单线性回归建模背后的基本目标是从成对的 X值和 Y值(即 X和 Y测量值)组成的二维平面中找到最吻合的直线。一旦用 最小方差法找到这条直线,就可以执行各种统计测试,以确定这条直线与观测到的 Y值的偏离量吻合程度。
线性方程( y = mx b)有两个参数必须根据所提供的 X和 Y数据估算出来,它们是斜率( m)和 y 轴截距( b)。一旦估算出这两个参数,就可以将观测值输入线性方程,并观察方程所生成的 Y预测值。
要使用最小方差法估算出 m和 b参数,就要找到 m 和 b 的估计值,使它们对于所有的 X值得到的 Y值的观测值和预测值最小。观测值和预测值之差称为误差( y i- (mx i b) ),并且,如果对每个误差值都求平方,然后求这些残差的和,其结果是一个被称为 预测平方差的数。使用最小方差法来确定最吻合的直线涉及寻找使预测方差最小的 m和 b的估计值。
可以用两种基本方法来找到满足最小方差法的估计值 m和 b。第一种方法,可以使用数值搜索过程设定不同的 m和 b值并对它们求值,最终决定产生最小方差的估计值。第二种方法是使用微积分找到用于估算 m和 b 的方程。我不打算深入讨论推导出这些方程所涉及的微积分,但我确实在 SimpleLinearRegression 类中使用了这些分析方程,以找到 m和 b 的最小平方估计值(请参阅 SimpleLinearRegression 类中的 getSlope() 和 getYIntercept 方法)。
即使拥有了可以用来找到 m和 b的最小平方估计值的方程,也并不意味着只要将这些参数代入线性方程,其结果就是一条与数据良好吻合的直线。这个简单线性回归过程中的下一步是确定其余的预测方差是否可以接受。
可以使用统计决策过程来否决“直线与数据吻合”这个备择假设。这个过程基于对 T 统计值的计算,使用概率函数求得随机大的观测值的概率。正如第 1 部分所提到的, SimpleLinearRegression 类生成了为数众多的汇总值,其中一个重要的汇总值是 T 统计值,它可以用来衡量线性方程与数据的吻合程度。如果吻合良好,则 T 统计值往往是一个较大的值;如果 T 值很小,就应该用一个缺省模型代替您的线性方程,该模型假定 Y值的平均值是最佳预测值(因为一组值的平均值通常可以是下一个观测值的有用的预测值)。
要测试 T 统计值是否大到可以不用 Y值的平均值作为最佳预测值,需要计算随机获得 T 统计值的概率。如果概率很低,那就可以不采用平均值是最佳预测值这一无效假设,并且相应地可以确信简单线性模型是与数据良好吻合的。(有关计算 T 统计值概率的更多信息,请参阅第 1 部分。)
回过头讨论统计决策过程。它告诉您何时不采用无效假设,却没有告诉您是否接受备择假设。在研究环境中,需要通过理论参数和统计参数来建立线性模型备择假设。
您将构建的数据研究工具实现了用于线性模型(T 测试)的统计决策过程,并提供了可以用来构造理论和统计参数的汇总数据,这些参数是建立线性模型所需要的。数据研究工具可以归类为决策支持工具,供知识工作者在中小规模的数据集中研究模式。
从学习的角度来看,简单线性回归建模值得研究,因为它是理解更高级形式的统计建模的必由之路。例如,简单线性回归中的许多核心概念为理解多次回归(Multiple Regression)、要素分析(Factor Analysis)和时间序列(Time Series)等建立了良好的基础。
简单线性回归还是一种多用途的建模技术。通过转换原始数据(通常用对数或幂转换),可以用它来为曲线数据建模。这些转换可以使数据线性化,这样就可以使用简单线性回归来为数据建模。所生成的线性模型将被表示为与被转换值相关的线性公式。
概率函数
在前一篇文章中,我通过交由 R 来求得概率值,从而避开了用 PHP 实现概率函数的问题。我对这个解决方案并非完全满意,因此我开始研究这个问题:开发基于 PHP 的概率函数需要些什么。
我开始上网查找信息和代码。一个两者兼有的来源是书籍 Numerical Recipes in C 中的概率函数。我用 PHP 重新实现了一些概率函数代码( gammln.c 和 betai.c 函数),但我对结果还是不满意。与其它一些实现相比,其代码似乎多了些。此外,我还需要反概率函数。
幸运的是,我偶然发现了 John Pezzullo 的 Interactive Statistical Calculation。John 关于 概率分布函数的网站上有我需要的所有函数,为便于学习,这些函数已用 JavaScript 实现。
我将 Student T 和 Fisher F 函数移植到了 PHP。我对 API 作了一点改动,以便符合 Java 命名风格,并将所有函数嵌入到名为 Distribution 的类中。该实现的一个很棒的功能是 doCommonMath 方法,这个库中的所有函数都重用了它。我没有花费力气去实现的其它测试(正态测试和卡方测试)也都使用 doCommonMath 方法。
这次移植的另一个方面也值得注意。通过使用 JavaScript,用户可以将动态确定的值赋给实例变量,譬如:
var PiD2 = pi() / 2
在 PHP 中不能这样做。只能把简单的常量值赋给实例变量。希望在 PHP5 中会解决这个缺陷。
请注意 清单 1中的代码并未定义实例变量 — 这是因为在 JavaScript 版本中,它们是动态赋予的值。
清单 1. 实现概率函数
<?php // Distribution.php // Copyright John Pezullo // Released under same terms as PHP. // PHP Port and OO'fying by Paul Meagher class Distribution { function doCommonMath($q, $i, $j, $b) { $zz = 1; $z = $zz; $k = $i; while($k <= $j) { $zz = $zz * $q * $k / ($k - $b); $z = $z $zz; $k = $k 2; } return $z; } function getStudentT($t, $df) { $t = abs($t); $w = $t / sqrt($df); $th = atan($w); if ($df == 1) { return 1 - $th / (pi() / 2); } $sth = sin($th); $cth = cos($th); if( ($df % 2) ==1 ) { return 1 - ($th $sth * $cth * $this->doCommonMath($cth * $cth, 2, $df - 3, -1)) / (pi()/2); } else { return 1 - $sth * $this->doCommonMath($cth * $cth, 1, $df - 3, -1); } } function getInverseStudentT($p, $df) { $v = 0.5; $dv = 0.5; $t = 0; while($dv > 1e-6) { $t = (1 / $v) - 1; $dv = $dv / 2; if ( $this->getStudentT($t, $df) > $p) { $v = $v - $dv; } else { $v = $v $dv; } } return $t; } function getFisherF($f, $n1, $n2) { // implemented but not shown } function getInverseFisherF($p, $n1, $n2) { // implemented but not shown } } ?>

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

本文介绍如何在Debian系统上构建高可用性的MongoDB数据库。我们将探讨多种方法,确保数据安全和服务持续运行。关键策略:副本集(ReplicaSet):利用副本集实现数据冗余和自动故障转移。当主节点出现故障时,副本集会自动选举新的主节点,保证服务的持续可用性。数据备份与恢复:定期使用mongodump命令进行数据库备份,并制定有效的恢复策略,以应对数据丢失风险。监控与报警:部署监控工具(如Prometheus、Grafana)实时监控MongoDB的运行状态,并

本文介绍在Debian系统下监控PostgreSQL数据库的多种方法和工具,助您全面掌握数据库性能监控。一、利用PostgreSQL内置监控视图PostgreSQL自身提供多个视图用于监控数据库活动:pg_stat_activity:实时展现数据库活动,包括连接、查询和事务等信息。pg_stat_replication:监控复制状态,尤其适用于流复制集群。pg_stat_database:提供数据库统计信息,例如数据库大小、事务提交/回滚次数等关键指标。二、借助日志分析工具pgBadg

关于Linux系统自带Python解释器的删除问题许多Linux发行版在安装时会预装Python解释器,它并非通过软件包管理器�...

如何在10小时内教计算机小白编程基础?如果你只有10个小时来教计算机小白一些编程知识,你会选择教些什么�...

Debian系统的网络配置主要通过/etc/network/interfaces文件实现,该文件定义了网络接口参数,例如IP地址、网关和DNS服务器等。Debian系统通常使用ifup和ifdown命令来启动和停止网络接口。通过修改interfaces文件中的iface行,可以设置静态IP或使用DHCP动态获取IP地址。需要注意的是,Debian12及后续版本不再默认使用NetworkManager,因此可能需要借助其他命令行工具,例如ip命令,来管理网络接口。您可以通过编辑/etc/netwo

攻克Investing.com的反爬虫策略许多人尝试爬取Investing.com(https://cn.investing.com/news/latest-news)的新闻数据时,常常�...

本文介绍如何在Debian系统上优化ZooKeeper性能。我们将从硬件、操作系统、ZooKeeper配置以及监控等方面提供建议。一、系统层面优化存储介质升级:使用SSD固态硬盘替换传统机械硬盘,显着提升I/O性能,降低访问延迟。禁用交换分区:通过调整内核参数,减少对交换分区的依赖,避免内存与磁盘频繁交换带来的性能损耗。提升文件描述符上限:增加系统允许同时打开的文件描述符数量,避免资源限制影响ZooKeeper的处理效率。二、ZooKeeper配置优化zoo.cfg文件配置

掌握Debian系统日志监控是高效运维的关键,它能帮助您及时了解系统运行状况,快速定位故障,并优化系统性能。本文将介绍几种常用的监控方法和工具。利用sysstat工具包监控系统资源sysstat工具包提供了一系列强大的命令行工具,用于收集、分析和报告各种系统资源指标,包括CPU负载、内存使用、磁盘I/O、网络吞吐量等。主要工具包括:sar:全面的系统资源统计工具,涵盖CPU、内存、磁盘、网络等。iostat:磁盘和CPU统计信息。mpstat:多核CPU的统计信息。pidsta
