首页 > 后端开发 > C++ > 正文

如何使用C++中的Floyd-Warshall算法

WBOY
发布: 2023-09-19 16:54:11
原创
896 人浏览过

如何使用C++中的Floyd-Warshall算法

如何使用C++中的Floyd-Warshall算法

Floyd-Warshall算法是一种用于求解有向加权图中所有节点对之间最短路径的算法。它采用动态规划的思想,通过不断更新节点对之间的距离信息,最终得出最短路径(即最小权重)。

在C++中,可以使用邻接矩阵(Adjacency Matrix)来表示图的结构,并通过Floyd-Warshall算法来求解最短路径。

邻接矩阵是一个二维数组,其中记录了每个节点之间的权重(距离)。若两个节点之间没有直接连接,则用一个较大的数(如无穷大)表示。

下面是一个示例代码,展示如何使用C++中的Floyd-Warshall算法:

#include <iostream>
using namespace std;

const int INF = 1e9; // 无穷大

void floydWarshall(int graph[][4], int n) {
    int dist[n][n];
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            dist[i][j] = graph[i][j];
        }
    }
  
    for (int k = 0; k < n; k++) {
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                if (dist[i][k] + dist[k][j] < dist[i][j]) {
                    dist[i][j] = dist[i][k] + dist[k][j];
                }
            }
        }
    }

    // 输出最短路径矩阵
    cout << "最短路径矩阵:" << endl;
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            if (dist[i][j] == INF) {
                cout << "INF" << "    ";
            } else {
                cout << dist[i][j] << "    ";
            }
        }
        cout << endl;
    }
}

int main() {
    int graph[4][4] = { {0, 5, INF, 10},
                        {INF, 0, 3, INF},
                        {INF, INF, 0, 1},
                        {INF, INF, INF, 0} };

    floydWarshall(graph, 4);

    return 0;
}
登录后复制

以上代码中,我们定义了一个4x4的邻接矩阵graph,并用INF表示不存在的边。然后,调用floydWarshall函数,传入图和节点数目。函数中,我们使用dist二维数组保存当前节点对之间的最短路径信息。

在Floyd-Warshall算法的主循环中,我们不断更新dist数组,直到得到最终的最短路径矩阵。最后,我们输出最短路径矩阵,将INF替换成无穷大,便于阅读。

请注意,由于Floyd-Warshall算法的时间复杂度为O(n^3),其中n为节点数目,因此对于大规模的图,算法可能会运行较慢。

希望这篇文章能够对你理解和使用C++中的Floyd-Warshall算法有所帮助。

以上是如何使用C++中的Floyd-Warshall算法的详细内容。更多信息请关注PHP中文网其他相关文章!

来源:php.cn
本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板