Salesforce与MIT研究者合作开源GPT-4改稿教程,实现更少字数却传递更多信息
自动摘要技术近年来取得了显着的进步,这主要得益于范式的转变。过去,该技术主要依赖于在标注数据集上进行有监督微调,但现在则采用了大语言模型(LLM)进行零样本 prompt,例如GPT-4。通过细致的 prompt 设置,不需要额外的训练,就能实现对摘要长度、主题、风格等方面特征的精细控制
但一个方面常常被忽视:摘要的信息密度。从理论上讲,作为对另一个文本的压缩,摘要应该比源文件更密集,也就是包含更多的信息。考虑到 LLM 解码的高延迟,用更少的字数涵盖更多的信息非常重要,尤其是对于实时应用而言。
然而,信息量密度是一个开放式的问题:如果摘要包含的细节不足,那么相当于没有信息量;如果包含的信息过多,又不增加总长度,就会变得难以理解。要在固定的 token 预算内传递更多信息,就需要将抽象、压缩、融合三者结合起来。
在最近的研究中,来自Salesforce、MIT等机构的研究者试图通过征求人类对GPT-4生成的一组摘要的偏好来确定其密度逐渐增加的限制。这种方法为提升GPT-4等大型语言模型的"表达能力"提供了许多启示
论文链接:https://arxiv.org/pdf/2309.04269.pdf
数据集地址:https: //huggingface.co/datasets/griffin/chain_of_density
具体来说,研究者们通过将每个令牌的平均实体数量作为密度的代表,生成了一个初始的、实体稀少的摘要。然后,在不增加总长度(总长度为5倍)的情况下,他们反复识别并融合前一个摘要中缺失的1-3个实体。每个摘要的实体与令牌比例都高于前一个摘要。根据人类的偏好数据,作者最终确定,人类更喜欢几乎与人类编写的摘要一样密集的摘要,而且比普通GPT-4提示生成的摘要更密集
该研究的总体贡献可以概括为以下几点:
我们需要开发一种基于prompt 的迭代方法(CoD),以提高摘要的实体密度
对CNN/《每日邮报》文章中摘要的密集程度进行人工和自动评估,以更好地了解信息量(倾向于更多实体)和清晰度(倾向于更少实体)之间的权衡
开源了GPT-4 摘要、注释和一组5000 篇未注释的CoD 摘要,用于评估或提炼。
CoD 是什么意思?
作者制定了一个单一的密度链(CoD)Prompt,即生成一个初始摘要,并使其实体密度不断增加。具体来说,在一个固定的交互次数中,源文本中一组独特的突出实体被识别出来,并在不增加长度的情况下融合到之前的摘要中。
在图2中展示了提示和输出示例。作者并没有明确指定实体的类型,而是将缺失的实体定义为:
与主要故事有关:
具体:简明扼要(5个字或更少);
独特:在之前的摘要中没有提及过;
忠实:存在于文章中;
任何地方:位于文章的任何地方。
作者从 CNN/DailyMail 摘要测试集中随机抽取了 100 篇文章,为其生成 CoD 摘要。为便于参考,他们将CoD 摘要统计数据与人类撰写的要点式参考摘要以及GPT-4 在普通Prompt 下生成的摘要进行比较:「写一篇非常简短的文章摘要。请勿超过70 个字。」
统计情况
在研究中,作者从直接统计数据和间接统计数据两方面进行了总结。直接统计数据(token、实体、实体密度)由 CoD 直接控制,而间接统计数据则是密集化的预期副产品。
直接统计数据。如表 1 所示,由于从最初冗长的摘要中删除了不必要的词语,第二步平均减少了 5 个 token(从 72 到 67)的长度。实体密度从 0.089 开始,最初低于人类和 Vanilla GPT-4(0.151 和 0.122),经过 5 步密集化后,最终上升到 0.167。间接统计。抽象度应该会随着每一步 CoD 的进行而增加,因为每增加一个实体,摘要就会被反复改写以腾出空间。作者用提取密度来衡量抽象性:提取片段的平均平方长度 (Grusky et al., 2018)。同样,随着实体被添加到固定长度的摘要中,概念融合度也应随之单调增加。作者用与每个摘要句子对齐的源句子的平均数量来表示融合度。在对齐上,作者使用相对 ROUGE 增益法 (Zhou et al., 2018),,该方法将源句与目标句对齐,直到额外句子的相对 ROUGE 增益不再为正。他们还预计内容分布(Content Distribution),也就是摘要内容所来源的文章中位置,会发生变化。
具体来说,作者预计 CoD 摘要最初会表现出强烈的「引导偏向」(Lead Bias),但随后会逐渐开始从文章的中间和末尾引入实体。为了测量这一点,他们使用了融合中的对齐重写内容时,需要使用中文进行重写,不需要出现原句,并测量了所有对齐源句的平均句子等级。
图3证实了这些假设:随着重写步骤的增加,抽象性也增加(左图显示提取密度较低),融合率也上升(中图显示),摘要开始包含文章中间和末尾的内容(右图显示)。有趣的是,与人类撰写的摘要和基线摘要相比,所有CoD摘要都更加抽象
重写内容时,需要使用中文进行重写,不需要出现原句
为了更好地理解 CoD 摘要的 tradeoff,作者开展了一项基于偏好的人类研究,并使用 GPT-4 进行了基于评级的评估。
人类偏好。具体来说,对于同样的 100 篇文章(5 个 step *100 = 总共 500 篇摘要),作者向论文的前四位作者随机展示了经过「重新创作」的 CoD 摘要以及文章。根据 Stiennon et al. (2020) 对「好摘要」的定义,每位注释者都给出了自己最喜欢的摘要。表 2 报告了各注释者在 CoD 阶段的第一名得票情况,以及各注释者的汇总情况。总的来说,61% 的第一名摘要(23.0+22.5+15.5)涉及≥3 个致密化步骤。首选 CoD 步数的中位数位于中间(3),预期步数为 3.06。
根据第三步的平均密度推测,所有CoD候选者的首选实体密度大约为0.15。从表1可以看出,这个密度与人类编写的摘要(0.151)相一致,但明显高于用普通GPT-4 Prompt编写的摘要(0.122)
自动度量。作为人工评估的补充(如下),作者用 GPT-4 从 5 个维度对 CoD 摘要进行评分(1-5 分):信息量、质量、连贯性、可归属性和整体性。如表 3 所示,密集度与信息量相关,但有一个限度,在步骤 4(4.74)时得分达到顶峰。
从各维度的平均得分来看,CoD 的第一个和最后一个步骤得分最低,而中间三个步骤得分接近(分别为 4.78、4.77 和 4.76)。
定性分析。摘要的连贯性 / 可读性与信息量之间存在着明显的 trade-off。图 4 中展示了两个 CoD 步骤:一个步骤的摘要因更多细节而得到改善,另一个步骤的摘要则受到损害。平均而言,中间 CoD 摘要最能实现这种平衡,但这种 tradeoff 仍需在今后的工作中去精确定义和量化。
更多论文细节,可参考原论文。
以上是Salesforce与MIT研究者合作开源GPT-4改稿教程,实现更少字数却传递更多信息的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

同样是图生视频,PaintsUndo走出了不一样的路线。ControlNet作者LvminZhang又开始整活了!这次瞄准绘画领域。新项目PaintsUndo刚上线不久,就收获1.4kstar(还在疯狂涨)。项目地址:https://github.com/lllyasviel/Paints-UNDO通过该项目,用户输入一张静态图像,PaintsUndo就能自动帮你生成整个绘画的全过程视频,从线稿到成品都有迹可循。绘制过程,线条变化多端甚是神奇,最终视频结果和原图像非常相似:我们再来看一个完整的绘

AIxiv专栏是本站发布学术、技术内容的栏目。过去数年,本站AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com在人工智能领域的发展过程中,对大语言模型(LLM)的控制与指导始终是核心挑战之一,旨在确保这些模型既强大又安全地服务于人类社会。早期的努力集中于通过人类反馈的强化学习方法(RL

AIxiv专栏是本站发布学术、技术内容的栏目。过去数年,本站AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com这篇论文的作者均来自伊利诺伊大学香槟分校(UIUC)张令明老师团队,包括:StevenXia,四年级博士生,研究方向是基于AI大模型的自动代码修复;邓茵琳,四年级博士生,研究方

如果AI模型给的答案一点也看不懂,你敢用吗?随着机器学习系统在更重要的领域得到应用,证明为什么我们可以信任它们的输出,并明确何时不应信任它们,变得越来越重要。获得对复杂系统输出结果信任的一个可行方法是,要求系统对其输出产生一种解释,这种解释对人类或另一个受信任的系统来说是可读的,即可以完全理解以至于任何可能的错误都可以被发现。例如,为了建立对司法系统的信任,我们要求法院提供清晰易读的书面意见,解释并支持其决策。对于大型语言模型来说,我们也可以采用类似的方法。不过,在采用这种方法时,确保语言模型生

最近,被称为千禧年七大难题之一的黎曼猜想迎来了新突破。黎曼猜想是数学中一个非常重要的未解决问题,与素数分布的精确性质有关(素数是那些只能被1和自身整除的数字,它们在数论中扮演着基础性的角色)。在当今的数学文献中,已有超过一千条数学命题以黎曼猜想(或其推广形式)的成立为前提。也就是说,黎曼猜想及其推广形式一旦被证明,这一千多个命题将被确立为定理,对数学领域产生深远的影响;而如果黎曼猜想被证明是错误的,那么这些命题中的一部分也将随之失去其有效性。新的突破来自MIT数学教授LarryGuth和牛津大学

把因果链展示给LLM,它就能学会公理。AI已经在帮助数学家和科学家做研究了,比如著名数学家陶哲轩就曾多次分享自己借助GPT等AI工具研究探索的经历。AI要在这些领域大战拳脚,强大可靠的因果推理能力是必不可少的。本文要介绍的这项研究发现:在小图谱的因果传递性公理演示上训练的Transformer模型可以泛化用于大图谱的传递性公理。也就是说,如果让Transformer学会执行简单的因果推理,就可能将其用于更为复杂的因果推理。该团队提出的公理训练框架是一种基于被动数据来学习因果推理的新范式,只有演示

干杯!当论文讨论细致到词句,是什么体验?最近,斯坦福大学的学生针对arXiv论文创建了一个开放讨论论坛——alphaXiv,可以直接在任何arXiv论文之上发布问题和评论。网站链接:https://alphaxiv.org/其实不需要专门访问这个网站,只需将任何URL中的arXiv更改为alphaXiv就可以直接在alphaXiv论坛上打开相应论文:可以精准定位到论文中的段落、句子:右侧讨论区,用户可以发表问题询问作者论文思路、细节,例如:也可以针对论文内容发表评论,例如:「给出至

当前,采用下一token预测范式的自回归大型语言模型已经风靡全球,同时互联网上的大量合成图像和视频也早已让我们见识到了扩散模型的强大之处。近日,MITCSAIL的一个研究团队(一作为MIT在读博士陈博远)成功地将全序列扩散模型与下一token模型的强大能力统合到了一起,提出了一种训练和采样范式:DiffusionForcing(DF)。论文标题:DiffusionForcing:Next-tokenPredictionMeetsFull-SequenceDiffusion论文地址:https:/
