如何用Python编写SVM算法?
SVM(Support Vector Machine)是一种常用的分类和回归算法,基于统计学习理论和结构风险最小化原理。它具有较高的准确性和泛化能力,并且适用于各种数据类型。在本篇文章中,我们将详细介绍如何使用Python编写SVM算法,并提供具体的代码示例。
pip install scikit-learn
import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets
iris = datasets.load_iris() X = iris.data[:, :2] # 我们只使用前两个特征 y = iris.target
C = 1.0 # SVM正则化参数 svc = svm.SVC(kernel='linear', C=C).fit(X, y)
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 h = (x_max / x_min)/100 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
然后,我们将这个网格作为输入特征进行预测,得到决策边界。
Z = svc.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape)
最后,我们使用matplotlib库画出样本点和决策边界。
plt.contourf(xx, yy, Z, cmap=plt.cm.Paired, alpha=0.8) plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.xticks(()) plt.yticks(()) plt.show()
import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets # 加载数据集 iris = datasets.load_iris() X = iris.data[:, :2] y = iris.target # 训练模型 C = 1.0 # SVM正则化参数 svc = svm.SVC(kernel='linear', C=C).fit(X, y) # 画出决策边界 x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 h = (x_max / x_min)/100 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = svc.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.contourf(xx, yy, Z, cmap=plt.cm.Paired, alpha=0.8) plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.xticks(()) plt.yticks(()) plt.show()
总结:
通过以上步骤,我们成功地使用Python编写了SVM算法,并且通过Iris数据集进行了演示。当然,这只是SVM算法的一个简单应用,SVM还有很多扩展和改进的方法,比如使用不同的核函数、调整正则化参数C等。希望本篇文章对你学习和理解SVM算法有所帮助。
以上是如何用Python编写SVM算法?的详细内容。更多信息请关注PHP中文网其他相关文章!