如何保护人工智能隐私?
尽管企业和消费者都对人工智能改变日常生活的潜力感到兴奋,但人工智能的广泛使用所带来的隐私问题仍是一个主要问题。显然,随着越来越多的个人数据被输入人工智能模型,许多消费者理所当然地担心他们的隐私,以及他们的数据被如何使用。
本文旨在帮助这些消费者建立有关人工智能隐私功能的更深入的知识库。此外,它还为企业主和领导者提供了指南,帮助他们更好地了解客户的担忧,以及如何在不牺牲功能的情况下保护隐私的方式使用人工智能。
人工智能和隐私问题
很少尊重版权和知识产权法
人工智能模型从网络的各个角落提取训练数据。不幸的是,许多人工智能供应商在未经他人同意的情况下使用他人受版权保护的艺术品、内容或其他知识产权时,要么没有意识到,要么不在乎。
随着模型被训练、再训练和使用这些数据进行微调,这个问题变得越来越严重,如今的许多人工智能模型都非常复杂,甚至它们的构建者也无法自信地说出,正在使用哪些数据以及谁可以访问这些数据。
未经授权合并用户数据
当人工智能模型用户以查询的形式输入自己的数据时,这些数据有可能成为模型未来训练数据集的一部分。当这种情况发生时,这些数据可能作为输出显示给其他用户的查询,如果用户向系统输入了敏感数据,这是一个特别大的问题。
监管机构和保障措施有限
目前,一些国家和监管机构正在制定人工智能法规和安全使用政策,但是还没有统一的标准来要求人工智能供应商对其构建和使用人工智能工具的方式负责
在过去,许多人工智能供应商因为侵犯知识产权以及不透明的培训和数据收集流程而受到了批评。然而,目前情况下,大多数人工智能供应商有权自主决定自己的数据存储、网络安全和用户规则,而不会受到干扰
未经授权使用生物识别数据
越来越多的个人设备正在采用面部识别、指纹、语音识别和其他生物识别数据来替代传统的身份验证方式。同时,公共监控设备也经常使用人工智能来扫描生物特征数据,以便更快地辨识个人
虽然这些新的生物识别安全工具非常方便,但对于人工智能企业在收集到这些数据后如何使用这些数据的监管有限。在许多情况下,个人甚至不知道他们的生物特征数据已经被收集,更不用说这些数据被存储并用于其他目的了。
隐蔽元数据收集实践
当用户与广告、社交媒体视频或几乎任何网络资产进行交互时,可以存储来自该交互的元数据以及用户的搜索历史和兴趣,以便将来进行更精确的内容定位
这种元数据收集方法已经持续多年,但在人工智能的帮助下,可以大规模收集和解释更多数据,使科技企业有可能在用户不知道其工作原理的情况下,进一步针对他们的信息。虽然大多数用户网站都有提及这些数据收集做法的政策,但只是在其他政策文本中简短提及,因此大多数用户没有意识到他们已经同意了什么,并将自己和移动设备上的所有内容置于审查之下。
人工智能模型的内置安全功能有限
尽管一些人工智能供应商可能会选择构建基本的网络安全功能和保护措施,但许多人工智能模型并没有本地的网络安全保障措施。这使得未经授权的用户和恶意行为者非常容易访问和使用其他用户的数据,包括个人身份信息(PII)
延长数据存储周期
很少有人工智能供应商能够公开他们存储用户数据的时间、地点和原因,而透明的供应商通常会存储很长一段时间的数据。
例如,OpenAI的政策声称,它可以将用户的输入和输出数据存储长达30天,以便识别滥用行为。然而,目前还不清楚该公司何时或如何在用户不知情的情况下更加细致地查看他们的个人数据
隐私和人工智能数据的收集
网络抓取和网络爬行
人工智能工具通常依赖于网络抓取和网络爬行来构建训练数据集,这是因为它们不需要特殊权限,同时也使得供应商能够收集大量不同的数据
内容是从互联网上的公开来源中抓取的,包括第三方网站、维基百科、数字图书馆等。近年来,用户元数据也成为通过网络抓取和爬行收集的大部分内容。这些元数据通常来自营销和广告数据集,以及包含目标受众和他们最关注的内容的网站。
人工智能模型中的用户查询
当用户将问题或其他数据输入人工智能模型时,大多数人工智能模型会将这些数据存储至少几天。尽管这些数据可能永远不会被用于其他目的,但研究表明,许多人工智能工具不仅会收集这些数据,还会保留它们以供将来的训练使用
生物识别技术
监控设备,如安全摄像头、面部和指纹扫描仪,以及能够检测人类声音的麦克风,可以用来收集生物识别数据,并在未经人类知情或同意的情况下识别其身份
许多企业在使用此类技术时需要保持多大的透明度的规定越来越严格。但在大多数情况下,他们可以收集、存储和使用这些数据,而无需征求客户的许可。
物联网传感器和设备
物联网(IoT)传感器和边缘计算系统收集大量实时数据,并在附近处理这些数据,以完成更大、更快的计算任务。人工智能软件通常利用物联网系统的数据库,并通过数据学习、数据摄取、安全物联网协议和网关以及api等方法收集相关数据
API
API提供了与不同类型商业软件的接口,使用户能够轻松收集和集成各种数据,以进行人工智能分析和训练。通过正确的API和设置,用户可以从CRM、数据库、数据仓库以及基于云的系统和本地系统中收集数据
公共记录
公共记录通常都会被收集并纳入人工智能训练集中,无论它们是否已经数字化。关于上市企业、当前和历史事件、犯罪和移民记录以及其他公共信息的信息可以在未经事先授权的情况下进行收集
用户调查和问卷
虽然这种数据收集方法有些过时,但调查和问卷仍然是人工智能供应商从用户那里收集数据的可靠方法
用户可以回答关于他们最感兴趣的内容、所需要帮助的内容、以及最近对产品或服务的体验如何,或者任何其他问题,这些问题可以让人工智能更好地了解如何在未来与该人进行个性化互动。 重写后:用户可以回答关于他们最感兴趣的内容、所需要帮助的内容、以及最近对产品或服务的体验如何,或者任何其他问题。这些问题可以帮助人工智能更好地了解如何在未来与用户进行个性化互动
人工智能和隐私问题的解决方案
借助一些最佳实践、工具和其他资源,企业可以有效地使用人工智能解决方案,而无需牺牲用户隐私。为了在人工智能使用的各个阶段保护最敏感的数据,请遵循以下提示:
- 为人工智能制定适当的使用政策:内部用户应该知道他们可以使用哪些数据,以及在使用人工智能工具时,应该如何以及何时使用这些数据,这对于处理敏感客户数据的企业尤其重要。
- 投资数据治理和安全工具:保护人工智能工具和其他攻击面的一些最佳解决方案,包括扩展检测和响应(XDR)、数据丢失防护以及威胁情报和监控软件。还有许多特定于数据治理的工具,可以帮助保护数据并确保所有数据的使用均符合相关法规。
- 阅读细则:人工智能供应商通常会提供某种文档,涵盖其产品的工作原理以及培训的基础知识。仔细阅读这些文件,找出任何危险信号,如果有什么你不确定的,或者在他们的政策文件中有不清楚的地方,联系他们的代表来澄清。
- 仅使用非敏感数据:作为一般规则,不要在任何人工智能工具中输入企业或客户最敏感的数据,即使它是一个定制或微调的感觉私密的解决方案。如果想要追求涉及敏感数据的特定用例,请研究是否有一种方法可以使用数字孪生、数据匿名化或合成数据安全地完成操作。
总结
人工智能工具为企业和日常消费者带来了许多新的便利,包括任务自动化、引导式问答以及产品设计和编程等方面。然而,尽管这些工具可以简化我们的生活,但它们也存在着侵犯个人隐私的风险,这可能会损害供应商的声誉和消费者的信任,同时也对网络安全和监管合规性构成威胁
以负责任的方式使用人工智能来保护用户隐私需要付出额外的努力,但当考虑到隐私侵犯会如何影响企业的公众形象时,这是非常值得的。尤其是随着这项技术的成熟,并在我们的日常生活中变得更加普遍,遵循人工智能法律的通过并开发更具体的、符合企业文化和客户隐私期望的人工智能,使用最佳实践将变得至关重要。
以上是如何保护人工智能隐私?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

在前端开发的世界里,VSCode以其强大的功能和丰富的插件生态,成为了无数开发者的首选工具。而近年来,随着人工智能技术的飞速发展,VSCode上的AI代码助手也如雨后春笋般涌现,极大地提升了开发者的编码效率。VSCode上的AI代码助手,如雨后春笋般涌现,极大地提升了开发者的编码效率。它利用人工智能技术,能够智能地分析代码,提供精准的代码补全、自动纠错、语法检查等功能,极大地减少了开发者在编码过程中的错误和繁琐的手工工作。有今天,就为大家推荐12款VSCode前端开发AI代码助手,助你在编程之路
