目录
方法
方法一:回溯法与剪枝
语法
算法
示例 1
输出
方法二:动态规划
Example 2
方法三:堆算法
方法4:字典序排序与剪枝
结论
首页 后端开发 C++ 字符串的排列,使得其中字符的数量大于其相邻字符的数量的最大化

字符串的排列,使得其中字符的数量大于其相邻字符的数量的最大化

Sep 24, 2023 am 11:09 AM
字符串排列 相邻字符 字符数量

字符串的排列,使得其中字符的数量大于其相邻字符的数量的最大化

在各种解决问题的场景中操作字符串至关重要。发现给定字符串的排列可以优化大于相邻字符的字符数,这是一个有趣的难题,需要重新排列字符串的字符以生成尽可能多的相邻字符对,其中左侧字符小于右侧字符。 p>

方法

有多种方法可以解决字符串的排列,其中最大字符数大于与其直接相邻的字符数。

方法 1 − 回溯法与剪枝 −

方法 2 - 动态规划 -

方法3 - 堆算法-

方法 4 - 带修剪的词典顺序 -

方法一:回溯法与剪枝

  • 使用回溯算法生成字符串的所有排列。

  • 在每一步中,检查当前排列是否有比其相邻字符更多的字符大于迄今为止找到的最大值。

  • 如果没有,请尽早修剪分支并回溯以避免不必要的计算。

语法

function backtrack_permutation(string):
   n = length(string)
   max_count = [0]  
登录后复制
  • 存储大于相邻字符的最大字符数

result = [None] * n 
登录后复制
  • 存储最终排列

function backtrack(curr_permutation, used_chars):
nonlocal max_count
if length(cu permutation) == n:
登录后复制
  • 计算大于相邻字符的字符数量

count = 0
   for i in range(1, n - 1):
      if cu permutation [i - 1] < cu permutation[i] > cu permutation [i + 1]:
   count += 1
      if count > max count [0]:
      max count [0] = count
      result [:] = cu permutation  
登录后复制
  • 更新结果

return
   for i in range(n):
      if not used_chars[i]:
登录后复制
  • 选择下一个字符

used_chars[i] = true
curr_permutation.append(string[i])
登录后复制
  • 回溯到下一个位置

backtrack(curr_permutation, used_chars)
登录后复制
  • 撤销选择

used_chars[i] = false
curr_permutation.pop()
登录后复制
  • 开始回溯过程

used_chars = [false] * n 
登录后复制
  • 跟踪已使用的字符

curr_permutation = []
backtrack(curr_permutation, used_chars)

return result.
登录后复制

算法

步骤 1 - 用一个空字符串开始 max_permutation。

  • 应定义辅助函数回溯(current_permutation、remaining_characters)。

步骤2 - 如果字符串remaining_characters为空 -

  • 如果当前排列的长度比最大排列的长度长,将max_permutation设置为current_permutation。

  • 返回。

步骤 3 - 在迭代中,遍历剩余字符中的每个字符 c -

  • 将 c 添加到 current_permutation 中以创建 new_permutation。

  • 如果new_permutation的长度大于1且其最后一个字符不再长于其前面的字符,则跳过此迭代。

  • 从remaining_characters中取出c,生成新的new_remaining。

  • 迭代调用回溯(new_permutation、new_remaining)。

第四步 - 调用回溯函数,将输入文本作为remaining_characters,将空字符串作为current_permutation。

第 5 步 - 提供输出 max_permutation。

示例 1

此程序通过首先将输入字符串“abcd”按升序排列来操作。随后,使用回溯函数生成每个可能的排列,该函数仅考虑大于前一个字符的字符,从而避免了不符合条件的重复排列。此外,isValidPermutation函数根据每个字符与其前一个字符进行评估,对于任何等于或小于后者的情况返回false。

结果是,这个有目的的过程会创建所有有效的排列,其中每个字符的最大数量都高于其相邻字符。我们可以自由地进一步定制给定的输入字符串、代码和逻辑,以满足个人的要求。

#include <iostream>
#include <string>
#include <algorithm>

using namespace std;
int maxCount = 0;

bool isValidPermutation(const string& str) {
   for (int i = 1; i < str.length(); i++) {
      if (str[i] <= str[i - 1]) {
         return false;
      }
   }
   return true;
}

void backtrack(string& str, int pos) {
   if (pos == str.length()) {
      if (isValidPermutation(str)) {
         cout << str << endl;
      }
      return;
   }

   for (int i = pos; i < str.length(); i++) {
      swap(str[pos], str[i]);
      if (str[pos] > str[pos - 1]) {
         backtrack(str, pos + 1);
      }
      swap(str[pos], str[i]);
   }
}

int main() {
   string input = "abcd";
   sort(input.begin(), input.end());  // Sort the input string initially
   backtrack(input, 1);

   return 0;
}
登录后复制

输出

abcd
登录后复制

方法二:动态规划

  • 使用动态规划逐步生成字符串的排列。

  • 从空前缀开始,考虑所有可能的位置,迭代地向其中添加字符。

  • 维护当前前缀中大于其相邻字符的字符数。

  • 修剪计数已经低于目前发现的最大值的分支。

语法

def find_max_permutation(string):
   n = len(string)
   dp = [0] * n
   dp[0] = 1
登录后复制
  • 动态编程循环

for i in range (1, n):
登录后复制
  • 检查当前字符是否大于其相邻字符

if string[i] > string[i-1]:
登录后复制
  • 如果是,则将计数增加1

dp[i] = dp[i-1] + 1
else:
登录后复制
  • 如果不是,计数是相同的

dp[i] = dp[i-1]
登录后复制
  • 查找 dp 数组中的最大计数

max_count = max(dp)

return max_count
登录后复制

算法

步骤 1 - 创建一个名为 maxPerm(str) 的函数,接受字符串作为输入,并返回满足指定条件的最长字符串的排列。

步骤 2 - 首先初始化长度为 n 的数组(称为 dp),其中 n 等于输入字符串 str 的长度。以位置 i 结束的最大排列串存储在每个元素 dp[i] 中。

第三步 - 将 dp [0] 初始化为字符串 str 的第一个字符。

第四步 - 从索引1到n-1迭代遍历str的字符 -

  • 初始化一个空字符串curr来存储当前最大排列字符串。

  • 对于索引 i 处的每个字符,将其与索引 i-1 处的前一个字符进行比较。

  • 如果 str[i] 大于 str[i-1],将 str[i] 添加到 curr 中。

  • 否则,将 str[i-1] 追加到 curr 中。

  • 使用 dp[i-1]curr 之间的最大值更新 dp[i]

第5步 - 循环完成后,最大排列字符串将存储在dp[n-1]中。

第 6 步 - 返回 dp[n-1] 作为结果。

Example 2

的中文翻译为:

示例2

在此示例中,输入字符串被硬编码为“abcbdb”。 findMaxPermutation 函数使用动态编程来计算每个索引处大于其相邻字符的最大字符数。然后,它通过回溯表来重建具有最大计数的字符串。生成的最大排列在 main 函数中打印。

#include <iostream>
#include <string>
#include <vector>

std::string findMaxPermutation(const std::string& str) {
   int n = str.length();
    
   // make a table to store the maximum count of characters
   // larger than their adjacent characters
   std::vector<std::vector<int>> dp(n, std::vector<int>(2, 0));

   // Initialize the table for the base case
   dp[0][0] = 0; // Count when str[0] is not included
   dp[0][1] = 1; // Count when str[0] is included
    
   // Calculate the maximum count for each index
   for (int i = 1; i < n; i++) {
      // When str[i] is not involved, the count is the maximum
      // when str[i-1] is included or not 
      dp[i][0] = std::max(dp[i-1][0], dp[i-1][1]);
        
      // When str[i] is involved, the count is the count when
      // str[i-1] is not included plus 1
      dp[i][1] = dp[i-1][0] + 1;
   }
    
   // The more count will be the largest of the last two values
   int maxCount = std::max(dp[n-1][0], dp[n-1][1]);

   // Reconstruct the string with the maximum count
   std::string maxPerm;
   int i = n - 1;
   int count = maxCount;
    
   // Start from the end and check which character to include
   while (i >= 0) {
      if ((dp[i][0] == count - 1 && dp[i][1] == count) || (dp[i][0] == count && dp[i][1] == count)) {
         maxPerm = str[i] + maxPerm;
         count--;
      }
      i--;
   }
   return maxPerm;
}
int main() {
   std::string str = "abcbdb";
   std::string maxPerm = findMaxPermutation(str);
    
   std::cout << "String: " << str << std::endl;
   std::cout << "Max Permutation: " << maxPerm << std::endl;
    
   return 0;
}
登录后复制

输出

String: abcbdb
Max Permutation: bbb
登录后复制

方法三:堆算法

  • 实现Heap算法,高效地生成字符串的所有排列。

  • 生成每个排列后,计算大于其相邻字符的字符数量。

  • 保持追踪到目前为止找到的最大计数,并根据需要进行更新。

语法

function generatePermutations(string):
   n = length(string)
   characters = array of n elements initialized with string's characters

   generatePermutationsHelper(n, characters)

function generatePermutationsHelper(n, characters):
   if n = 1:
      checkAndPrintPermutation(characters)
   else:
   for i = 0 to n-1:
      generatePermutationsHelper(n-1, characters)
            
   if n is even:
      swap characters[i] and characters[n-1]
   else:
      swap characters [0] and characters[n-1]
登录后复制

算法

第一步 - 已经初始化了一个数组,用于存储输入字符串的字符。

第 2 步 - 继续创建一个函数,并将其命名为“generatePermutations”,带有两个参数 - 一个最终变量“size”,用于确定数组的大小,以及一个名为“arr”的数组,其中包含字符串字符。

步骤 3 - 如果大小为 1,则通过将数组中的字符组合在一起,直到最大字符数超过连续字符数,打印当前排列。

步骤 4 - 如果不是,则函数返回。为了从索引 0 到 'size - 1' 迭代数组,我们使用一个名为 'i' 的变量。

第 5 步 - 在此迭代中,我们进一步迭代参数大小 - 1 和错误的generatePermutations 函数。

第 6 步 - 如果 size 恰好是奇数,则我们将数组中索引 0 处的元素替换为索引“size - 1”处的元素。

第 7 步 - 类似地,如果 size 结果是偶数,我们将数组中索引“i”处的元素替换为索引“size - 1”。

步骤8 - 最后,我们使用初始数组大小和数组本身作为参数调用"generatePermutations"函数。

示例 1

以下的C++示例使用Heap's算法创建字符串的排列,并识别出在其相邻字符上具有最大字符数的排列 −

为了说明问题,在这个例子中使用"abcd"作为输入字符串。可以修改变量来使用不同的输入字符串。如果排列满足具有比其邻居更多字符的要求,则找到isValidPermutation函数是否有效。generatePermutations函数使用堆栈方法来跟踪具有最多字符的排列,以便它可以生成输入字符串的每个可能的排列。主函数将最大数量和排列本身作为输出打印。

#include <iostream>
#include <algorithm>
using namespace std;

// Function to check if the permutation satisfies the condition
bool isValidPermutation(const string& perm) {
   int n = perm.length();
   for (int i = 0; i < n - 1; i++) {
      if (abs(perm[i] - perm[i + 1]) <= 1)
         return false;
   }
   return true;
}

// Function to swap two characters in a string
void swapChar(char& a, char& b) {
   char temp = a;
   a = b;
   b = temp;
}

// Heap's Algorithm for generating permutations
void generatePermutations(string& str, int n, int& maxCount, string& maxPerm, int idx = 0) {
   if (idx == n - 1) {
      if (isValidPermutation(str)) {
         int count = count_if(str.begin(), str.end(), [](char c) {
            return isalpha(c) && c >= 'A' && c <= 'Z';
         });
         if (count > maxCount) {
            maxCount = count;
            maxPerm = str;
         }
      }
      return;
   }

   for (int i = idx; i < n; i++) {
      swapChar(str[idx], str[i]);
      generatePermutations(str, n, maxCount, maxPerm, idx + 1);
      swapChar(str[idx], str[i]);
   }
}

int main() {
   string str = "abcd";
   int n = str.length();
   int maxCount = 0;
   string maxPerm;

   generatePermutations(str, n, maxCount, maxPerm);

   if (maxCount == 0) {
      cout << "No valid permutation found." << endl;
   } else {
      cout << "Maximum number of characters greater than adjacent characters: " << maxCount << endl;
      cout << "Permutation with the maximum count: " << maxPerm << endl;
   }
   return 0;
}
登录后复制

输出

No valid permutation found.
登录后复制

方法4:字典序排序与剪枝

  • 按字典顺序对字符串的字符进行排序。

  • 生成排序字符串的排列。

  • 在每一步中,检查当前排列是否满足最大字符数大于其相邻字符的条件。

  • 如果不是这样,请跳过具有相似前缀的剩余排列,以避免不必要的计算。

语法

  • 生成字符串所有排列的函数

function generatePermutations(string):
登录后复制
  • TODO:排列生成的实现

  • 检查字符是否大于其相邻字符的函数

function isGreaterAdjacent(char1, char2):
登录后复制
  • TODO:比较逻辑的实现

  • 找到具有大于相邻字符的最大数量的排列的函数

function findMaxAdjacentPermutation(string):
登录后复制
  • 生成字符串的所有排列

permutations = generatePermutations(string)
登录后复制
  • 初始化变量

max_permutation = ""
max_count = 0
登录后复制
  • 遍历每个排列

for permutation in permutations:
   count = 0
登录后复制
  • 迭代排列中的每个字符(不包括最后一个字符)

for i from 0 to length(permutation) - 2:
   char1 = permutation[i]
   char2 = permutation[i + 1]
登录后复制
  • 检查当前字符是否大于其相邻字符

if isGreaterAdjacent(char1, char2):
   count = count + 1
登录后复制
  • 检查当前排列的计数是否大于先前的最大值

if count > max_count:
   max_permutation = permutation
   max_count = count
登录后复制
  • 返回具有最大计数的排列

return max_permutation
登录后复制

算法

第一步 - 从输入字符串开始。

第 2 步 - 按字典顺序对字符串进行排序以获得初始排列。

第 3 步 - 将变量 maxCount 初始化为 0,以跟踪大于相邻字符的最大字符数。

第 4 步 - 初始化变量 maxPermutation 以存储最大计数的排列。

第 5 步 - 当有下一个排列时 -

  • 将变量 count 初始化为 0,以跟踪当前大于相邻字符的字符数。

  • 对于当前排列中的每个字符 -

    • 检查当前字符是否大于其前一个字符和后一个字符(如果存在)。

    • 如果满足条件,则将计数增加 1。

  • 如果计数大于最大计数(maxCount)-

    • 将maxCount更新为当前计数。

    • 将 maxPermutation 更新为当前排列。

步骤 6 - 将 maxPermutation 作为结果返回。

示例 1

对于此示例,为简单起见,让我们考虑固定字符串“abcde”。

在这个例子中,countAdjacentGreater函数统计字符串中相邻字符大于其前一个字符的数量。findMaxPermutation函数生成输入字符串的所有排列,并检查每个排列,找出具有最大数量相邻字符大于的那个。

主要函数初始化输入字符串"abcde"和跟踪最大计数和最大排列的变量。它调用findMaxPermutation函数来找到最大排列。

#include <iostream>
#include <algorithm>
#include <string>

using namespace std;

int countAdjacentGreater(const string& str) {
   int count = 0;
   for (int i = 0; i < str.length() - 1; i++) {
      if (str[i] < str[i + 1]) {
         count++;
      }
   }
   return count;
}

void findMaxPermutation(string& str, int& maxCount, string& maxPerm) {
   sort(str.begin(), str.end());
    
   do {
      int count = countAdjacentGreater(str);
      if (count > maxCount) {
         maxCount = count;
         maxPerm = str;
      }
   } while (next_permutation(str.begin(), str.end()));
}

int main() {
   string str = "abcde";
   int maxCount = 0;
   string maxPerm;

   findMaxPermutation(str, maxCount, maxPerm);

   cout << "String with the maximum number of characters greater than its adjacent characters: " << maxPerm << endl;
   cout << "Count of adjacent characters greater in the maximum permutation: " << maxCount << endl;

   return 0;
}
登录后复制

输出

String with the maximum number of characters greater than its adjacent characters: abcde
Count of adjacent characters greater in the maximum permutation: 4
登录后复制

结论

总之,找到最大字符数大于相邻字符的字符串的排列问题是字符串操作中的一个有趣的挑战。通过分析给定的字符串并有策略地重新排列其字符,可以实现所需的排列。这个问题凸显了在使用字符串和排列时仔细检查和创造性思维的重要性。

以上是字符串的排列,使得其中字符的数量大于其相邻字符的数量的最大化的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它们
4 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

C语言数据结构:树和图的数据表示与操作 C语言数据结构:树和图的数据表示与操作 Apr 04, 2025 am 11:18 AM

C语言数据结构:树和图的数据表示与操作树是一个层次结构的数据结构由节点组成,每个节点包含一个数据元素和指向其子节点的指针二叉树是一种特殊类型的树,其中每个节点最多有两个子节点数据表示structTreeNode{intdata;structTreeNode*left;structTreeNode*right;};操作创建树遍历树(先序、中序、后序)搜索树插入节点删除节点图是一个集合的数据结构,其中的元素是顶点,它们通过边连接在一起边可以是带权或无权的数据表示邻

C语言文件操作难题的幕后真相 C语言文件操作难题的幕后真相 Apr 04, 2025 am 11:24 AM

文件操作难题的真相:文件打开失败:权限不足、路径错误、文件被占用。数据写入失败:缓冲区已满、文件不可写、磁盘空间不足。其他常见问题:文件遍历缓慢、文本文件编码不正确、二进制文件读取错误。

在C中如何有效地使用RVALUE参考? 在C中如何有效地使用RVALUE参考? Mar 18, 2025 pm 03:29 PM

文章讨论了在C中有效使用RVALUE参考,以进行移动语义,完美的转发和资源管理,重点介绍最佳实践和性能改进。(159个字符)

如何在C 20中使用范围进行更有表现的数据操纵? 如何在C 20中使用范围进行更有表现的数据操纵? Mar 17, 2025 pm 12:58 PM

C 20范围通过表现力,合成性和效率增强数据操作。它们简化了复杂的转换并集成到现有代码库中,以提高性能和可维护性。

c语言函数的基本要求有哪些 c语言函数的基本要求有哪些 Apr 03, 2025 pm 10:06 PM

C语言函数是代码模块化和程序搭建的基础。它们由声明(函数头)和定义(函数体)组成。C语言默认使用值传递参数,但也可使用地址传递修改外部变量。函数可以有返回值或无返回值,返回值类型必须与声明一致。函数命名应清晰易懂,使用驼峰或下划线命名法。遵循单一职责原则,保持函数简洁性,以提高可维护性和可读性。

c上标3下标5怎么算 c上标3下标5算法教程 c上标3下标5怎么算 c上标3下标5算法教程 Apr 03, 2025 pm 10:33 PM

C35 的计算本质上是组合数学,代表从 5 个元素中选择 3 个的组合数,其计算公式为 C53 = 5! / (3! * 2!),可通过循环避免直接计算阶乘以提高效率和避免溢出。另外,理解组合的本质和掌握高效的计算方法对于解决概率统计、密码学、算法设计等领域的许多问题至关重要。

如何使用C中的移动语义来提高性能? 如何使用C中的移动语义来提高性能? Mar 18, 2025 pm 03:27 PM

本文讨论了使用C中的移动语义来通过避免不必要的复制来提高性能。它涵盖了使用std :: Move的实施移动构造函数和任务运算符,并确定了关键方案和陷阱以有效

动态调度如何在C中起作用,如何影响性能? 动态调度如何在C中起作用,如何影响性能? Mar 17, 2025 pm 01:08 PM

本文讨论了C中的动态调度,其性能成本和优化策略。它突出了动态调度会影响性能并将其与静态调度进行比较的场景,强调性能和之间的权衡

See all articles