基于电荷的原子模拟实现,利用预训练通用神经网络CHGNet
重新编写的内容是:紫罗
复杂电子相互作用的大规模模拟仍然是原子建模面临的最大挑战之一。虽然经典力场通常无法描述电子态和离子重排之间的耦合,但更准确的从头算分子动力学受到计算复杂性的影响,无法进行长时间和大规模的模拟,而这对于研究技术相关现象至关重要
近日,来自加州大学伯克利分校和劳伦斯伯克利国家实验室的研究人员,提出了一种基于图神经网络的机器学习原子间势(MLIP)模型:晶体哈密顿图神经网络(Crystal Hamiltonian Graph Neural Network,CHGNet),可以对通用势能面进行建模。
研究强调了电荷信息对于捕获适当的化学反应的重要性,并提供了对离子系统的见解,这些离子系统具有以前的 MLIP 无法观察到的额外电子自由度。
该研究以「CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling」为题,于 2023 年 9 月 14 日发布在《Nature Machine Intelligence》上。
大规模模拟,如分子动力学(MD),是固态材料计算探索的重要工具。然而,精确建模电子相互作用及其在分子动力学模拟中微妙影响仍然是一个巨大的挑战。经典力场等经验方法通常不够准确,无法捕捉复杂的电子相互作用
从头算分子动力学 (AIMD) 与密度泛函理论 (DFT) 相结合,可以通过显式计算密度泛函近似内的电子结构,产生具有量子力学精度的高保真结果。长时间、大规模的自旋极化 AIMD 模拟对于研究离子迁移、相变和化学反应至关重要,具有挑战性且计算量极大。
诸如 ænet 和 DeepMD 之类的 MLIP,为弥合昂贵的电子结构方法和高效的经典原子间电势之间的差距提供了有希望的解决方案。然而,包含化合价对化学键的重要影响仍然是 MLIP 的一个挑战。
电荷可以通过多种方式来表示,从简单的氧化态标签到从量子力学推导出的连续波函数。将电荷信息纳入MLIP的挑战来自于许多因素,例如表示的模糊性、解释的复杂性、标签的稀缺性等
需要重新写作的内容是:CHGNet 架构
CHGNet根据材料项目轨迹数据集(MPtrj)的能量、力、应力和磁矩进行了预训练。该数据集包含了对150万个无机结构进行了10多年的密度泛函理论计算。通过明确包含磁矩,CHGNet能够学习并准确表示电子的轨道占据情况,从而增强了其描述原子和电子自由度的能力
MPtrj 数据集中元素的分布如下图所示
重写内容:图示:MPtrj数据集中元素的分布情况。(来源:论文)
在这里,研究人员将电荷定义为一种原子属性(原子电荷),可以通过包含磁矩(magmoms)来推断。研究表明,通过明确地将特定位点的 magmoms 作为电荷态约束纳入 CHGNet 中,既可以增强潜在空间正则化,又可以准确捕获电子相互作用
CHGNet 的基础是 GNN,其中图卷积层用于通过由边 {eij} 连接的一组节点 {vi} 传播原子信息。GNN 中保留了平移、旋转和排列不变性。CHGNet 以具有未知原子电荷的晶体结构作为输入,并输出相应的能量、力、应力和 magmoms。电荷装饰结构可以从现场 magmoms 和原子轨道理论推断出来。
重写内容如下:图示:CHGNet 模型架构。(来源:论文)
在 CHGNet 中,通过在原始单元中每个原子 vi 的内搜索相邻原子 vj,将周期性晶体结构转换为原子图
。
与其他 GNN 不同,其中 t 个卷积层后更新的原子特征直接用于预测能量,CHGNet 正则化 t−1 卷积层的节点特征
以包含有关岩浆的信息。正则化特征
携带有关局部离子环境和电荷分布的丰富信息。因此,用于预测能量、力和应力的原子特征
是受其电荷态信息约束的电荷。因此,CHGNet 可以仅使用核位置和原子身份作为输入来提供电荷态信息,从而可以研究原子建模中的电荷分布。
CHGNet 在固态材料中的应用
研究人员展示了 CHGNet 在固态材料中的几种应用。展示了 Na2V2(PO4)3 中原子电荷的电荷约束和潜在空间正则化,并展示了 CHGNet 在 LixMnO2 中的电荷转移和相变、LixFePO4 相图中的电子熵以及石榴石型锂超离子导体 Li3+xLa3Te2O12 中的锂 (Li) 和扩散率。
为了合理化对原子电荷的处理,使用 NASICON 型钠离子阴极材料 Na4V2(PO4)3 作为说明性示例。除了从 V 原子核的空间配位中学习之外,在没有任何有关 V 离子电荷分布的先验知识的情况下,CHGNet 成功地将 V 离子区分为三价 V 和四价 V 两组。
图中展示了Na2V2(PO4)3中的磁矩和隐藏空间的规范化。 (引用自论文)
在 LixFePO4 的研究中强调了 CHGNet 区分
的能力,这对于包含电子熵和有限温度相稳定性至关重要。
图示:来自 CHGNet 的 LixFePO4 相图。(来源:论文)
在 LiMnO2 的研究中,证明了 CHGNet 能够通过长时间的电荷信息 MD 深入了解异价过渡金属氧化物体系中电荷歧化和相变之间的关系。
重写内容:图示:Li0.5MnO2的相变和电荷分化。(引自:论文)
接下来,我们研究了CHGNet在通用分子动力学模拟中的准确性。我们以石榴石导体中锂扩散为研究对象
图示:石榴石 Li3La3Te2O12 中的锂扩散率。(来源:论文)
结果显示,CHGNet不仅能够准确捕捉到活化扩散网络效应,而且其活化能量与DFT结果非常一致。这证明了CHGNet能够准确捕捉到锂离子在局部环境中的强相互作用,并具备模拟高度非线性扩散行为的能力。此外,CHGNet能够显著减少模拟扩散率的误差,并且通过扩展到纳秒级模拟,能够研究扩散率较差的系统
可进一步改进
虽然已经取得了以上的进步,但仍然有进一步改进的空间
首先,使用 magmom 进行价态推断并不能严格确保全局电荷中性
其次,尽管对于离子系统中自旋极化计算的原子电荷来说,magmom是一个很好的启发式方法,但人们意识到对于非磁性离子的原子电荷推断可能是不明确的,因此需要额外的领域知识。因此,对于没有magmom的离子,以原子为中心的magmom无法准确反映其原子电荷,CHGNet将从环境中推断电荷,类似于其他MLIP的功能
可以通过结合其他电荷表示方法来进一步增强模型,例如电子定位函数、电极化和基于原子轨道的划分。这些方法可以用于原子特征工程在潜在空间中
CHGNet 可以实现基于电荷的原子模拟,适用于大规模计算模拟以研究异价体系,从而扩大了计算化学、物理学、生物学和材料科学中电荷转移耦合现象的研究机会
请点击以下链接查看论文:https://www.nature.com/articles/s42256-023-00716-3
以上是基于电荷的原子模拟实现,利用预训练通用神经网络CHGNet的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

在现代制造业中,精准的缺陷检测不仅是保证产品质量的关键,更是提升生产效率的核心。然而,现有的缺陷检测数据集常常缺乏实际应用所需的精确度和语义丰富性,导致模型无法识别具体的缺陷类别或位置。为了解决这一难题,由香港科技大学广州和思谋科技组成的顶尖研究团队,创新性地开发出了“DefectSpectrum”数据集,为工业缺陷提供了详尽、语义丰富的大规模标注。如表一所示,相比其他工业数据集,“DefectSpectrum”数据集提供了最多的缺陷标注(5438张缺陷样本),最细致的缺陷分类(125种缺陷类别

开放LLM社区正是百花齐放、竞相争鸣的时代,你能看到Llama-3-70B-Instruct、QWen2-72B-Instruct、Nemotron-4-340B-Instruct、Mixtral-8x22BInstruct-v0.1等许多表现优良的模型。但是,相比于以GPT-4-Turbo为代表的专有大模型,开放模型在很多领域依然还有明显差距。在通用模型之外,也有一些专精关键领域的开放模型已被开发出来,比如用于编程和数学的DeepSeek-Coder-V2、用于视觉-语言任务的InternVL

对于AI来说,奥数不再是问题了。本周四,谷歌DeepMind的人工智能完成了一项壮举:用AI做出了今年国际数学奥林匹克竞赛IMO的真题,并且距拿金牌仅一步之遥。上周刚刚结束的IMO竞赛共有六道赛题,涉及代数、组合学、几何和数论。谷歌提出的混合AI系统做对了四道,获得28分,达到了银牌水平。本月初,UCLA终身教授陶哲轩刚刚宣传了百万美元奖金的AI数学奥林匹克竞赛(AIMO进步奖),没想到7月还没过,AI的做题水平就进步到了这种水平。IMO上同步做题,做对了最难题IMO是历史最悠久、规模最大、最负

编辑|KX时至今日,晶体学所测定的结构细节和精度,从简单的金属到大型膜蛋白,是任何其他方法都无法比拟的。然而,最大的挑战——所谓的相位问题,仍然是从实验确定的振幅中检索相位信息。丹麦哥本哈根大学研究人员,开发了一种解决晶体相问题的深度学习方法PhAI,利用数百万人工晶体结构及其相应的合成衍射数据训练的深度学习神经网络,可以生成准确的电子密度图。研究表明,这种基于深度学习的从头算结构解决方案方法,可以以仅2埃的分辨率解决相位问题,该分辨率仅相当于原子分辨率可用数据的10%到20%,而传统的从头算方

编辑|ScienceAI基于有限的临床数据,数百种医疗算法已被批准。科学家们正在讨论由谁来测试这些工具,以及如何最好地进行测试。DevinSingh在急诊室目睹了一名儿科患者因长时间等待救治而心脏骤停,这促使他探索AI在缩短等待时间中的应用。Singh利用了SickKids急诊室的分诊数据,与同事们建立了一系列AI模型,用于提供潜在诊断和推荐测试。一项研究表明,这些模型可以加快22.3%的就诊速度,将每位需要进行医学检查的患者的结果处理速度加快近3小时。然而,人工智能算法在研究中的成功只是验证此

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

2023年,几乎AI的每个领域都在以前所未有的速度进化,同时,AI也在不断地推动着具身智能、自动驾驶等关键赛道的技术边界。多模态趋势下,Transformer作为AI大模型主流架构的局面是否会撼动?为何探索基于MoE(专家混合)架构的大模型成为业内新趋势?大型视觉模型(LVM)能否成为通用视觉的新突破?...我们从过去的半年发布的2023年本站PRO会员通讯中,挑选了10份针对以上领域技术趋势、产业变革进行深入剖析的专题解读,助您在新的一年里为大展宏图做好准备。本篇解读来自2023年Week50

编辑|紫罗AI在简化药物发现方面的应用正在爆炸式增长。从数十亿种候选分子中筛选出可能具有开发新药所需特性的分子。需要考虑的变量太多了,从材料价格到出错的风险,即使科学家使用AI,权衡合成最佳候选分子的成本也不是一件容易的事。在此,MIT研究人员开发了一个定量决策算法框架SPARROW,来自动识别最佳分子候选物,从而最大限度地降低合成成本,同时最大限度地提高候选物具有所需特性的可能性。该算法还确定了合成这些分子所需的材料和实验步骤。SPARROW考虑了一次合成一批分子的成本,因为多个候选分子通常可
