首页 科技周边 人工智能 文档字越多,模型越兴奋!KOSMOS-2.5:阅读「文本密集图像」的多模态大语言模型

文档字越多,模型越兴奋!KOSMOS-2.5:阅读「文本密集图像」的多模态大语言模型

Sep 29, 2023 pm 08:13 PM
文档 模型 kosmos

目前的一个明显趋势是致力于构建更大更复杂的模型,这些模型拥有数百/数千亿个参数,能够生成令人印象深刻的语言输出

然而,现有的大型语言模型主要集中在文本信息上,无法理解视觉信息。

因此多模态大型语言模型(MLLMs)领域的进展旨在解决这一限制,MLLMs将视觉和文本信息融合到一个基于Transformer的单一模型中,使该模型能够根据这两种模态学习和生成内容。

MLLMs在各种实际应用中显示出潜力,包括自然图像理解和文本图像理解。这些模型利用语言建模作为处理多模态问题的通用接口,使其能够根据文本和视觉输入处理和生成响应

然而,目前主要关注分辨率较低的自然图像的MLLMs,对于文本密集图像的研究还相对较少。因此,充分利用大规模多模态预训练来处理文本图像成为MLLM研究的一个重要方向

通过将文本图像纳入训练过程并开发基于文本和视觉信息的模型,我们可以开辟涉及高分辨率文本密集图像的多模态应用的新可能性。

文档字越多,模型越兴奋!KOSMOS-2.5:阅读「文本密集图像」的多模态大语言模型图片

论文地址:https://arxiv.org/abs/2309.11419

KOSMOS-2.5是一个基于文本密集图像的多模态大型语言模型,它是在KOSMOS-2的基础上发展而来的,突出了对于文本密集图像的多模态阅读和理解能力(Multimodal Literate Model)。

该模型的提出凸显了其在理解文本密集型图像方面的卓越性能,弥合了视觉和文本之间的差距

同时,这也标志着任务范式的演变,从以前的编码器-解码器架构转变为纯解码器架构

KOSMOS-2.5的目标是在文本丰富的图像中实现无缝的视觉和文本数据处理,以便理解图像内容并生成结构化文本描述。

文档字越多,模型越兴奋!KOSMOS-2.5:阅读「文本密集图像」的多模态大语言模型图1:KOSMOS-2.5概览图

KOSMOS-2.5是一个多模态模型,如图1所示,它的目标是使用统一的框架来处理两个紧密相关的任务

第一个任务涉及生成具有空间感知的文本块,即同时生成文本块的内容与坐标框。 需要被改写的内容是:第一个任务涉及生成具有空间感知的文本块,即同时生成文本块的内容与坐标框

第二项任务涉及使用Markdown格式生成结构化的文本输出,并捕捉各种样式和结构

文档字越多,模型越兴奋!KOSMOS-2.5:阅读「文本密集图像」的多模态大语言模型图2:KOSMOS-2.5架构图

根据图2所示,两个任务都使用了共享的Transformer架构和任务特定的提示

KOSMOS-2.5将基于ViT(Vision Transformer)的视觉编码器与基于Transformer架构的解码器相结合,通过一个重采样模块连接起来。

文档字越多,模型越兴奋!KOSMOS-2.5:阅读「文本密集图像」的多模态大语言模型图3:预训练数据集

为了训练这个模型,作者准备了一个庞大的数据集,其大小达到了324.4M,如图3所示

文档字越多,模型越兴奋!KOSMOS-2.5:阅读「文本密集图像」的多模态大语言模型图4:带有边界框的文本行的训练样本示例

文档字越多,模型越兴奋!KOSMOS-2.5:阅读「文本密集图像」的多模态大语言模型图5:Markdown格式的训练样本示例

该数据集包含各种类型的文本密集图像,其中包括带有边界框的文本行和纯文本的Markdown格式,图4和图5为训练样本示例可视化。

这种多任务训练方法提高了KOSMOS-2.5在整体上的多模态能力

文档字越多,模型越兴奋!KOSMOS-2.5:阅读「文本密集图像」的多模态大语言模型[图6] 端到端的文档级文本识别实验

文档字越多,模型越兴奋!KOSMOS-2.5:阅读「文本密集图像」的多模态大语言模型图7:从图像中生成Markdown格式文本实验

如图6和图7所示,KOSMOS-2.5在两个任务上进行评估:端到端的文档级文本识别和从图像中生成Markdown格式文本。

KOSMOS-2.5在处理文本密集的图像任务方面表现出色,实验结果展示了这一点

文档字越多,模型越兴奋!KOSMOS-2.5:阅读「文本密集图像」的多模态大语言模型图8:KOSMOS-2.5的输入和输出样例展示

KOSMOS-2.5在少样本学习和零样本学习的场景中展现了有前景的能力,使其成为处理文本丰富图像的实际应用的多功能工具。可以将其视为一种多功能工具,能够有效处理文本丰富的图像,并在少样本学习和零样本学习的情况下展现出有前景的能力

作者指出,指令微调是一个很有前景的方法,可以实现模型更广泛的应用能力。

在更广泛的研究领域中,一个重要的方向在于进一步发展模型参数的扩展能力。

随着任务范围的不断扩大和复杂性的不断提高,扩展模型以处理更大量的数据对于文字密集的多模态模型的发展至关重要。

最终目标是开发出一种能有效解释视觉和文本数据的模型,并在更多文本密集型多模态任务中顺利推广。

重写内容时,需要将其改写成中文,不需要出现原句

https://arxiv.org/abs/2309.11419

以上是文档字越多,模型越兴奋!KOSMOS-2.5:阅读「文本密集图像」的多模态大语言模型的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
威尔R.E.P.O.有交叉游戏吗?
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

全球最强开源 MoE 模型来了,中文能力比肩 GPT-4,价格仅为 GPT-4-Turbo 的近百分之一 全球最强开源 MoE 模型来了,中文能力比肩 GPT-4,价格仅为 GPT-4-Turbo 的近百分之一 May 07, 2024 pm 04:13 PM

想象一下,一个人工智能模型,不仅拥有超越传统计算的能力,还能以更低的成本实现更高效的性能。这不是科幻,DeepSeek-V2[1],全球最强开源MoE模型来了。DeepSeek-V2是一个强大的专家混合(MoE)语言模型,具有训练经济、推理高效的特点。它由236B个参数组成,其中21B个参数用于激活每个标记。与DeepSeek67B相比,DeepSeek-V2性能更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,最大生成吞吐量提高到5.76倍。DeepSeek是一家探索通用人工智

AI颠覆数学研究!菲尔兹奖得主、华裔数学家领衔11篇顶刊论文|陶哲轩转赞 AI颠覆数学研究!菲尔兹奖得主、华裔数学家领衔11篇顶刊论文|陶哲轩转赞 Apr 09, 2024 am 11:52 AM

AI,的确正在改变数学。最近,一直十分关注这个议题的陶哲轩,转发了最近一期的《美国数学学会通报》(BulletinoftheAmericanMathematicalSociety)。围绕「机器会改变数学吗?」这个话题,众多数学家发表了自己的观点,全程火花四射,内容硬核,精彩纷呈。作者阵容强大,包括菲尔兹奖得主AkshayVenkatesh、华裔数学家郑乐隽、纽大计算机科学家ErnestDavis等多位业界知名学者。AI的世界已经发生了天翻地覆的变化,要知道,其中很多文章是在一年前提交的,而在这一

你好,电动Atlas!波士顿动力机器人复活,180度诡异动作吓坏马斯克 你好,电动Atlas!波士顿动力机器人复活,180度诡异动作吓坏马斯克 Apr 18, 2024 pm 07:58 PM

波士顿动力Atlas,正式进入电动机器人时代!昨天,液压Atlas刚刚「含泪」退出历史舞台,今天波士顿动力就宣布:电动Atlas上岗。看来,在商用人形机器人领域,波士顿动力是下定决心要和特斯拉硬刚一把了。新视频放出后,短短十几小时内,就已经有一百多万观看。旧人离去,新角色登场,这是历史的必然。毫无疑问,今年是人形机器人的爆发年。网友锐评:机器人的进步,让今年看起来像人类的开幕式动作、自由度远超人类,但这真不是恐怖片?视频一开始,Atlas平静地躺在地上,看起来应该是仰面朝天。接下来,让人惊掉下巴

替代MLP的KAN,被开源项目扩展到卷积了 替代MLP的KAN,被开源项目扩展到卷积了 Jun 01, 2024 pm 10:03 PM

本月初,来自MIT等机构的研究者提出了一种非常有潜力的MLP替代方法——KAN。KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。KAN与MLP一样具有强大的数学基础,MLP基于通用逼近定理,而KAN基于Kolmogorov-Arnold表示定理。如下图所示,KAN在边上具

特斯拉机器人进厂打工,马斯克:手的自由度今年将达到22个! 特斯拉机器人进厂打工,马斯克:手的自由度今年将达到22个! May 06, 2024 pm 04:13 PM

特斯拉机器人Optimus最新视频出炉,已经可以在厂子里打工了。正常速度下,它分拣电池(特斯拉的4680电池)是这样的:官方还放出了20倍速下的样子——在小小的“工位”上,拣啊拣啊拣:这次放出的视频亮点之一在于Optimus在厂子里完成这项工作,是完全自主的,全程没有人为的干预。并且在Optimus的视角之下,它还可以把放歪了的电池重新捡起来放置,主打一个自动纠错:对于Optimus的手,英伟达科学家JimFan给出了高度的评价:Optimus的手是全球五指机器人里最灵巧的之一。它的手不仅有触觉

FisheyeDetNet:首个基于鱼眼相机的目标检测算法 FisheyeDetNet:首个基于鱼眼相机的目标检测算法 Apr 26, 2024 am 11:37 AM

目标检测在自动驾驶系统当中是一个比较成熟的问题,其中行人检测是最早得以部署算法之一。在多数论文当中已经进行了非常全面的研究。然而,利用鱼眼相机进行环视的距离感知相对来说研究较少。由于径向畸变大,标准的边界框表示在鱼眼相机当中很难实施。为了缓解上述描述,我们探索了扩展边界框、椭圆、通用多边形设计为极坐标/角度表示,并定义一个实例分割mIOU度量来分析这些表示。所提出的具有多边形形状的模型fisheyeDetNet优于其他模型,并同时在用于自动驾驶的Valeo鱼眼相机数据集上实现了49.5%的mAP

牛津大学最新!Mickey:3D中的2D图像匹配SOTA!(CVPR\'24) 牛津大学最新!Mickey:3D中的2D图像匹配SOTA!(CVPR\'24) Apr 23, 2024 pm 01:20 PM

写在前面项目链接:https://nianticlabs.github.io/mickey/给定两张图片,可以通过建立图片之间的对应关系来估计它们之间的相机姿态。通常,这些对应关系是二维到二维的,而我们估计的姿态在尺度上是不确定的。一些应用,例如随时随地实现即时增强现实,需要尺度度量的姿态估计,因此它们依赖于外部的深度估计器来恢复尺度。本文提出了MicKey,这是一个关键点匹配流程,能够够预测三维相机空间中的度量对应关系。通过学习跨图像的三维坐标匹配,我们能够在没有深度测试的情况下推断出度量相对

单卡跑Llama 70B快过双卡,微软硬生生把FP6搞到了A100里 | 开源 单卡跑Llama 70B快过双卡,微软硬生生把FP6搞到了A100里 | 开源 Apr 29, 2024 pm 04:55 PM

FP8和更低的浮点数量化精度,不再是H100的“专利”了!老黄想让大家用INT8/INT4,微软DeepSpeed团队在没有英伟达官方支持的条件下,硬生生在A100上跑起FP6。测试结果表明,新方法TC-FPx在A100上的FP6量化,速度接近甚至偶尔超过INT4,而且拥有比后者更高的精度。在此基础之上,还有端到端的大模型支持,目前已经开源并集成到了DeepSpeed等深度学习推理框架中。这一成果对大模型的加速效果也是立竿见影——在这种框架下用单卡跑Llama,吞吐量比双卡还要高2.65倍。一名

See all articles