八问CIO:让企业做好迎接生成式AI的准备
企业现在意识到,他们面临的任务是让他们的数据、人员和流程做好准备,以充分利用生成式人工智能的潜力。实际上,最近一项埃森哲的调查发现,几乎所有(99%)的高管都表示计划加大对这项技术的投资。因此,领导者们需要从根本上重新思考如何完成工作。CIO们具有跨职能的业务流程视角,再加上对如何利用技术重塑运营和交付价值的深入了解,因此他们特别具备帮助组织为生成式人工智能做好准备的能力
然而,领导者们却在努力采取必要的后续措施来推动这项技术落地。例如,埃森哲最近的一份报告发现,有67%的高级技术领导者认为,同级高管缺乏技术敏锐度是把技术融入战略制定的主要障碍,克服这个障碍的关键是要理解生成式AI和创新,并将其与企业的成功联系起来。
将AI有效地集成到业务中,首先是要设定明确的目标来定义业务价值,并使AI战略与这些总体业务目标保持一致。很多正在负责推动企业数字化议程的CIO们已经开始把AI作为核心,利用AI解决方案来实现战略中最关键的要素。他们认识到,构建强大的基础设施是他们组织迈向企业就绪之旅重要的第一步,这将使企业能够以最大的效率和效果扩展生成式AI,并促进整个企业对这项技术的成功采用。事实上,有98%的全球高管认为,未来三到五年内AI基础模型将在其组织战略中发挥重要的作用。
在设计新的AI Navigator for Enterprise的过程中,我们明确了CIO应该问自己的这八个问题,以确定他们的企业是否已经准备好迎接生成式AI进行压力测试
- 我们应该使用哪种基础模型?换句话说,哪种架构最能确保模型的输出是相关的、可靠的且可用的。生成式AI的模型和厂商数量不断增加,你需要仔细考虑进行选择,以确保它是符合你组织需求和要求的。
- 我如何让这些模型可以为我们所用?企业可以采用两种主要方法来部署模型,每种方法都有自己的优点。你是否需要一个“完全控制的”选项来访问你自己公有云上的 模型,还是计划把生成式AI作为来自外部供应商的托管云服务以实现速度和简单性?
- 我们如何让模型适应我们自己的数据以供使用?AI和数据已经成为强大数字核心的一个关键组成部分,这也是当今企业竞争优势的主要来源。要从生成式AI中获得最大的价值,就需要利用你的专有数据来提高企业内的准确性、性能和实用性。你可以考虑使用各种方法来调整预训练模型,以打造与你组织和人员相关的定制工具。
- 企业整体的准备情况如何?首先要考虑你的集成和互操作性框架。你的基础模型是安全且可以安全使用的吗?采用生成式AI,让每家企业都迫切地需要制定强大且负责任的AI合规计划。遵守法律、法规和道德标准,这对于建立健全的AI基础是至关重要的,在设计阶段管理控制措施以评估生成式AI用例的潜在风险也是如此。
- 那我们的碳足迹呢?基础模型虽然经过预先训练,但在适应和微调的过程中,仍然可以要耗费大量能量。消耗多少以及带来怎样的影响,这要取决于购买、增强或构建基础模型所采取的方法。如果不加以控制,这有可能对环境造成严重的影响,因此提前权衡可持续性这个因素以便为企业和环境做出正确的选择,就变得越来越重要。
- 如何实现生成式AI智能应用开发的产业化?选择和部署基础模型后的下一步,是要考虑工业化和加速应用开发可能需要哪些新的框架。快速工程技术正在迅速成为一种差异化的能力。通过工业化流程,你可以建立一个与特定业务功能或者领域相符合的高效的、精心设计的提示和模板语料库。
- 我们需要什么来大规模运营生成式AI?颠覆现有流程和重新发明新技术的工作方式所带来的复杂性本身,就是一大挑战。但寻找大规模AI变现的方法,应该是每个CIO都关心的问题。AI成为了培育创新的沃土,CIO们应该在整个企业结构中建立良好的联系。寻找跨职能协作的机会,将带来新的洞察和明智的决策,从而促进组织内部和整个行业的开放式创新,同时释放新的增长机会。
- 我应该从哪里开始着手,以及我们如何继续指导未来发展方向?AI驱动的生产力是下一个重要的里程碑。软件开发是CIO发挥影响力的一个成熟领域,你应该深入研究并分享你的用例,通过试点项目的实际成果来展示团队的实际经验。例如,埃森哲去年研究了生成式AI是如何帮助软件开发团队更快地推出产品。埃森哲使用了Amazon CodeWhisperer等新一代AI工具,发现开发人员的工作效率和代码质量有了显着提高,整体发布周期更快了,帮助在创纪录的时间内交付了新的AWS Velocity平台。通过成为你自己的案例研究,你可以展示如何将其变为现实,并指导组织内其他部门进行实验和测试、快速行动并快速扩展使用。你将更有能力指导你的利益相关者,了解技术的发展方向、发展的速度、以及组织可以期望获得的结果。
新的拐点
技术对于每个行业来说,是实现更强劲增长、更高敏捷性和更强弹性的关键,而生成式AI是其中一个重要的差异化因素,这项技术将从根本上改变我们的工作和生活。埃森哲的研究发现,40%的工作时间会受到大型语言模型的影响。仔细观察就会发现,特别是在IT和技术角色中,总工作时间的73%是可以通过生成式AI带来改变的,这凸显了为安全地、负责任地、经济高效地、且具有商业价值的方式扩展生成式AI奠定适当基础的重要性。
CIO有一个重要的机会可以帮助他们的企业应对当今快速变化的数字环境所带来的复杂性。利用AI的突破性进步和面向整个企业的绩效方法,他们可以找到方法让技术为他们自己服务,从而重新定义自己及其所在的行业。
以上是八问CIO:让企业做好迎接生成式AI的准备的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

图片来源@视觉中国文|王吉伟从“人+RPA”到“人+生成式AI+RPA”,LLM如何影响RPA人机交互?换个角度,从人机交互看LLM如何影响RPA?影响程序开发与流程自动化人机交互的RPA,现在也要被LLM改变了?LLM如何影响人机交互?生成式AI怎么改变RPA人机交互?一文看明白:大模型时代来临,基于LLM的生成式AI正在快速变革RPA人机交互;生成式AI重新定义人机交互,LLM正在影响RPA软件架构变迁。如果问RPA对程序开发以及自动化有哪些贡献,其中一个答案便是它改变了人机交互(HCI,h

生成式AI是人类一种人工智能技术,可以生成各种类型的内容,包括文本、图像、音频和合成数据。那么什么是人工智能?人工智能和机器学习之间的区别是什么?人工智能是学科,是计算机科学的一个分支,研究智能代理的创建,这些智能代理是可以推理、学习和自主执行动作的系统。从本质上讲,人工智能与建筑像人类一样思考和行动的机器的理论和方法有关。在这个学科中,机器学习ML是人工智能的一个领域。它是根据输入数据训练模型的程序或系统,经过训练的模型可以从新的或未见过的数据中做出有用的预测,这些数据来自于训练模型的统一数据

▲本图由AI生成酷家乐、三维家、东易日盛等已出手,装饰装修产业链大举引入AIGC生成式AI在装饰装修领域有哪些应用?对设计师有啥影响?一文看懂告别各种设计软件一句话生成效果图,生成式AI正颠覆装饰装修领域使用人工智能增强能力提升设计效率,生成式AI变革装饰装修行业生成式AI对装饰装修行业有哪些影响?未来发展趋势如何?一文看懂LLM变革装饰装修,这28款流行生成式AI装修设计工具值得上手体验文/王吉伟在装饰装修领域,最近与AIGC关联的消息着实不少。Collov推出了生成式AI驱动的设计工具Col

根据市场研究公司Omdia的一份最新报告,预计到2023年,生成式人工智能(GenAI)将成为一个引人注目的技术趋势,为企业和个人带来重要的应用,包括教育。在电信领域,GenAI的用例主要集中在提供个性化营销内容或支持更复杂的虚拟助手,以提升客户体验尽管生成式AI在网络运营中的应用并不明显,但EnterpriseWeb进行了一项有趣的概念验证,展示了该领域中生成式AI的潜力生成式AI在网络自动化方面的能力和限制生成式AI在网络运营中的早期应用之一是利用交互式指导替代工程手册来帮助安装网络元件,从

亚马逊云科技大中华区战略业务发展部总经理顾凡2023年,大语言模型和生成式AI在全球市场“狂飙”,不仅引发了AI和云计算产业的“排山倒海”式跟进,也在强力吸引制造巨头们的入局。海尔创新设计中心就打造了全国首个AIGC工业设计解决方案,大幅缩短设计周期,并降低概念设计成本,不仅将整体概念设计提速了83%、集成渲染效率也提升了约90%,高效解决了设计阶段人力成本高、概念产出与通过效率低等问题。西门子中国基于自有模型的智能知识库暨智能会话机器人“小禹”,具备自然语言处理、知识库检索、通过数据训练大语言

大模型落地加速,“产业实用”成为发展共识。2024年5月17日,腾讯云生成式AI产业应用峰会在北京召开,公布大模型研发、应用产品的系列进展。腾讯混元大模型能力持续升级,多个版本模型hunyuan-pro、hunyuan-standard、hunyuan-lite通过腾讯云对外开放,满足企业客户、开发者在不同场景下的模型需求,落地最优性价比模型方案。腾讯云大模型知识引擎、图像创作引擎、视频创作引擎三大工具发布,打造大模型时代原生工具链,通过PaaS服务简化数据接入、模型精调、应用开发流程,助力企业

人工智能的崛起正在推动软件开发的快速发展。这一强大技术有可能彻底改变我们构建软件的方法,对设计、开发、测试和部署等各个方面都会产生深远影响。对于企图进入动态软件开发领域的企业来说,生成式人工智能技术的问世为它们提供了前所未有的发展机遇。将这一前沿技术纳入其开发流程后,公司可以大幅提升生产效率、缩短产品上市周期,并推出在激烈竞争的数字市场中脱颖而出的优质软件产品。根据麦肯锡的一份报告,预测到2031年,生成式人工智能市场规模有望达到4.4万亿美元。这一预测不仅反映了一种趋势,更显示出技术和商业格局

从上世纪70年代诞生迄今,PC(个人电脑)已经到了“知天命”的年龄。借用黄仁宇的“大历史观”和康德拉季耶夫的“康波周期”理论,在更宽广的视野下审视PC的来龙去脉,也许可以看到其未来的模样。PC在IT(信息技术)领域扮演着重要的角色,它的命运与IT产业的发展息息相关。PC源于上世纪中叶的图灵机、信息论和控制论,推动了信息技术的快速发展,成为80、90年代最具先锋特色的产品,并在2000年后的互联网浪潮中达到了巅峰。然而,在摘取了“低垂的果实”后,IT行业进入了创新瓶颈期,PC也开始逐渐走下坡路人工
