目录
论文思路:
网络设计:
实验结果:
引用:
首页 科技周边 人工智能 BEV下的Radar-Camera 融合跨数据集实验研究

BEV下的Radar-Camera 融合跨数据集实验研究

Oct 05, 2023 pm 06:45 PM
数据 自动驾驶

原标题:Cross-Dataset Experimental Study of Radar-Camera Fusion in Bird’s-Eye View
论文链接:https://arxiv.org/pdf/2309.15465.pdf
作者单位:Opel Automobile GmbH Rheinland-Pfalzische Technische Universitat Kaiserslautern-Landau German Research Center for Artificial Intelligence

BEV下的Radar-Camera 融合跨数据集实验研究

论文思路:

通过利用互补的传感器信息,毫米波雷达和相机融合系统具有潜力为先进的驾驶员辅助系统和自动驾驶功能提供高度稳健和可靠的感知系统。基于相机的目标检测的最新进展为毫米波雷达和相机的融合提供了新的可能性,可以利用鸟瞰特征图进行融合。本研究提出了一种新颖且灵活的融合网络,并在两个数据集(nuScenes 和 View-of-Delft)上评估了其性能。实验结果表明,虽然相机分支需要大量且多样化的训练数据,但毫米波雷达分支从高性能的毫米波雷达中受益更多。通过迁移学习,本研究提高了相机在较小数据集上的性能。研究结果进一步表明,毫米波雷达和相机的融合方法明显优于仅使用相机或仅使用毫米波雷达的基准方法

网络设计:

最近,3D目标检测的一个趋势是将图像的特征转换成一种常见的鸟瞰图(BEV)表示。这种表示方式提供了一种灵活的融合架构,可以在多个摄像头之间进行融合,也可以使用测距传感器进行融合。在这项工作中,我们扩展了原本用于激光摄像头融合的BEVFusion方法,用于毫米波雷达摄像头的融合。我们使用选定的毫米波雷达数据集对我们提出的融合方法进行了训练和评估。在几个实验中,我们讨论了每个数据集的优缺点。最后,我们应用迁移学习来实现进一步的改进

BEV下的Radar-Camera 融合跨数据集实验研究

以下是需要重新编写的内容: 图1展示了基于BEVFusion的BEV毫米波雷达-相机融合流程图。在生成的相机图像中,我们包括了投影毫米波雷达的探测结果和真实边界框

本文遵循BEVFusion的融合架构。图1展示了本文在BEV中进行毫米波雷达-camera融合的网络概况。请注意,融合发生时,camera和毫米波雷达特征在BEV连接。下面,本文将为每个区块提供进一步的细节。

需要重写的内容是:A.相机编码器和相机到BEV视图转换

camera编码器和视图变换采用了[15]的思想,它是一种灵活的框架,可以提取任意camera外部和内部参数的图像BEV特征。首先,使用tiny-Swin Transformer网络从每个图像中提取特征。接下来,本文利用[14]的 Lift 和 Splat 步骤将图像的特征转换到BEV平面。为此,密集深度预测之后是基于规则的block,其中的特征被转换成伪点云,并进行栅格化并累积到BEV网格中。

雷达柱特征编码器

此块的目的是将毫米波雷达点云编码到与图像BEV特征相同的网格上的BEV特征中。为此,本文使用了[16]的 pillar 特征编码技术,将点云光栅化为无限高的体素,即所谓的pillar。

需要重新写的内容是:C. BEV编码器

与[5]相似,毫米波雷达和相机的BEV特征是通过级联融合来实现的。融合后的特征由联合卷积BEV编码器处理,以便网络能够考虑空间错位并利用不同模态之间的协同效应

D. Detection Head

本文使用CenterPoint检测头来预测每个类的目标中心的热图。进一步的回归头预测物体的尺寸、旋转和高度,以及nuScenes的速度和类属性。而热图采用高斯焦点损失进行训练,其余的检测头采用L1损失进行训练

实验结果:

BEV下的Radar-Camera 融合跨数据集实验研究

BEV下的Radar-Camera 融合跨数据集实验研究

BEV下的Radar-Camera 融合跨数据集实验研究

引用:

Stäcker, L., Heidenreich, P., Rambach, J., & Stricker, D. (2023). 《鸟瞰视角下雷达-摄像头融合的跨数据集实验研究》. ArXiv. /abs/2309.15465

BEV下的Radar-Camera 融合跨数据集实验研究

需要重写的内容是:原文链接;https://mp.weixin.qq.com/s/5mA5up5a4KJO2PBwUcuIdQ

以上是BEV下的Radar-Camera 融合跨数据集实验研究的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

使用ddrescue在Linux上恢复数据 使用ddrescue在Linux上恢复数据 Mar 20, 2024 pm 01:37 PM

DDREASE是一种用于从文件或块设备(如硬盘、SSD、RAM磁盘、CD、DVD和USB存储设备)恢复数据的工具。它将数据从一个块设备复制到另一个块设备,留下损坏的数据块,只移动好的数据块。ddreasue是一种强大的恢复工具,完全自动化,因为它在恢复操作期间不需要任何干扰。此外,由于有了ddasue地图文件,它可以随时停止和恢复。DDREASE的其他主要功能如下:它不会覆盖恢复的数据,但会在迭代恢复的情况下填补空白。但是,如果指示工具显式执行此操作,则可以将其截断。将数据从多个文件或块恢复到单

开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计! 开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计! Apr 03, 2024 pm 12:04 PM

0.这篇文章干了啥?提出了DepthFM:一个多功能且快速的最先进的生成式单目深度估计模型。除了传统的深度估计任务外,DepthFM还展示了在深度修复等下游任务中的最先进能力。DepthFM效率高,可以在少数推理步骤内合成深度图。下面一起来阅读一下这项工作~1.论文信息标题:DepthFM:FastMonocularDepthEstimationwithFlowMatching作者:MingGui,JohannesS.Fischer,UlrichPrestel,PingchuanMa,Dmytr

自动驾驶场景中的长尾问题怎么解决? 自动驾驶场景中的长尾问题怎么解决? Jun 02, 2024 pm 02:44 PM

昨天面试被问到了是否做过长尾相关的问题,所以就想着简单总结一下。自动驾驶长尾问题是指自动驾驶汽车中的边缘情况,即发生概率较低的可能场景。感知的长尾问题是当前限制单车智能自动驾驶车辆运行设计域的主要原因之一。自动驾驶的底层架构和大部分技术问题已经被解决,剩下的5%的长尾问题,逐渐成了制约自动驾驶发展的关键。这些问题包括各种零碎的场景、极端的情况和无法预测的人类行为。自动驾驶中的边缘场景"长尾"是指自动驾驶汽车(AV)中的边缘情况,边缘情况是发生概率较低的可能场景。这些罕见的事件

谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择 谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择 Apr 01, 2024 pm 07:46 PM

谷歌力推的JAX在最近的基准测试中性能已经超过Pytorch和TensorFlow,7项指标排名第一。而且测试并不是在JAX性能表现最好的TPU上完成的。虽然现在在开发者中,Pytorch依然比Tensorflow更受欢迎。但未来,也许有更多的大模型会基于JAX平台进行训练和运行。模型最近,Keras团队为三个后端(TensorFlow、JAX、PyTorch)与原生PyTorch实现以及搭配TensorFlow的Keras2进行了基准测试。首先,他们为生成式和非生成式人工智能任务选择了一组主流

iPhone上的蜂窝数据互联网速度慢:修复 iPhone上的蜂窝数据互联网速度慢:修复 May 03, 2024 pm 09:01 PM

在iPhone上面临滞后,缓慢的移动数据连接?通常,手机上蜂窝互联网的强度取决于几个因素,例如区域、蜂窝网络类型、漫游类型等。您可以采取一些措施来获得更快、更可靠的蜂窝互联网连接。修复1–强制重启iPhone有时,强制重启设备只会重置许多内容,包括蜂窝网络连接。步骤1–只需按一次音量调高键并松开即可。接下来,按降低音量键并再次释放它。步骤2–该过程的下一部分是按住右侧的按钮。让iPhone完成重启。启用蜂窝数据并检查网络速度。再次检查修复2–更改数据模式虽然5G提供了更好的网络速度,但在信号较弱

超级智能体生命力觉醒!可自我更新的AI来了,妈妈再也不用担心数据瓶颈难题 超级智能体生命力觉醒!可自我更新的AI来了,妈妈再也不用担心数据瓶颈难题 Apr 29, 2024 pm 06:55 PM

哭死啊,全球狂炼大模型,一互联网的数据不够用,根本不够用。训练模型搞得跟《饥饿游戏》似的,全球AI研究者,都在苦恼怎么才能喂饱这群数据大胃王。尤其在多模态任务中,这一问题尤为突出。一筹莫展之际,来自人大系的初创团队,用自家的新模型,率先在国内把“模型生成数据自己喂自己”变成了现实。而且还是理解侧和生成侧双管齐下,两侧都能生成高质量、多模态的新数据,对模型本身进行数据反哺。模型是啥?中关村论坛上刚刚露面的多模态大模型Awaker1.0。团队是谁?智子引擎。由人大高瓴人工智能学院博士生高一钊创立,高

nuScenes最新SOTA | SparseAD:稀疏查询助力高效端到端自动驾驶! nuScenes最新SOTA | SparseAD:稀疏查询助力高效端到端自动驾驶! Apr 17, 2024 pm 06:22 PM

写在前面&出发点端到端的范式使用统一的框架在自动驾驶系统中实现多任务。尽管这种范式具有简单性和清晰性,但端到端的自动驾驶方法在子任务上的性能仍然远远落后于单任务方法。同时,先前端到端方法中广泛使用的密集鸟瞰图(BEV)特征使得扩展到更多模态或任务变得困难。这里提出了一种稀疏查找为中心的端到端自动驾驶范式(SparseAD),其中稀疏查找完全代表整个驾驶场景,包括空间、时间和任务,无需任何密集的BEV表示。具体来说,设计了一个统一的稀疏架构,用于包括检测、跟踪和在线地图绘制在内的任务感知。此外,重

美国空军高调展示首个AI战斗机!部长亲自试驾全程未干预,10万行代码试飞21次 美国空军高调展示首个AI战斗机!部长亲自试驾全程未干预,10万行代码试飞21次 May 07, 2024 pm 05:00 PM

最近,军事圈被这个消息刷屏了:美军的战斗机,已经能由AI完成全自动空战了。是的,就在最近,美军的AI战斗机首次公开,揭开了神秘面纱。这架战斗机的全名是可变稳定性飞行模拟器测试飞机(VISTA),由美空军部长亲自搭乘,模拟了一对一的空战。5月2日,美国空军部长FrankKendall在Edwards空军基地驾驶X-62AVISTA升空注意,在一小时的飞行中,所有飞行动作都由AI自主完成!Kendall表示——在过去的几十年中,我们一直在思考自主空对空作战的无限潜力,但它始终显得遥不可及。然而如今,

See all articles