首页 科技周边 人工智能 制作莫比乌斯环,最少需要多长纸带?50年来的谜题被解开了

制作莫比乌斯环,最少需要多长纸带?50年来的谜题被解开了

Oct 07, 2023 pm 06:17 PM
工程 richard evan schwartz 莫比乌斯带

自己动手做过莫比乌斯带吗?

莫比乌斯带是一种奇特的数学结构。要构造一个这样美丽的单面曲面其实非常简单,即使是小孩子也可以轻松完成。你只需要取一张纸带,扭曲一次,然后将两端粘在一起。然而,这样容易制作的莫比乌斯带却有着复杂的性质,长期吸引着数学家们的兴趣。

最近,研究人员一直被一个看似简单的问题困扰着,那就是关于制作莫比乌斯带所需纸带的最短长度?布朗大学 Richard Evan Schwartz 谈到,对于莫比乌斯带来说,这个问题没有解决,因为它们是「嵌入的」而不是「浸入的」,这意味着它们不会相互渗透或自我相交。莫比乌斯带实际上是一个全息图,一种投影到三维空间的图形:对于「浸入的」的莫比乌斯带,多层带可以彼此重叠,有点像幽灵穿过墙壁;对于「嵌入的」的而言,没有这样的重叠。
制作莫比乌斯环,最少需要多长纸带?50年来的谜题被解开了
1977 年,数学家 Charles Sidney Weaver 和 Benjamin Rigler Halpern 提出了这个关于最小尺寸的问题,并指出如果允许莫比乌斯带自相交,那么这个问题就简单了。那么,剩下的问题就是要确定需要多少空间来避免自交。Halpern 和 Weaver 曾提出了一个最小尺寸,但他们无法证明这一想法,因此被称为 Halpern-Weaver 猜想。

Schwartz 在四年前首次了解到这个问题,在得知后就被这个问题深深吸引住。现在,他的兴趣已经变为新的成果了。
制作莫比乌斯环,最少需要多长纸带?50年来的谜题被解开了
论文地址:https://arxiv.org/pdf/2308.12641.pdf

他在 2023 年 8 月 24 日发布在 arXiv.org 上的一份预印本论文中证明了 Halpern-Weaver 猜想。他证明了用纸制成的「嵌入的」莫比乌斯带只能以大于制作莫比乌斯环,最少需要多长纸带?50年来的谜题被解开了的纵横比构造出来。例如,如果带子长度为 1 厘米,它的宽必须要大于制作莫比乌斯环,最少需要多长纸带?50年来的谜题被解开了厘米。

解决这个难题需要数学创造力。当人们采用标准方法来解决这类问题时,很难通过公式来区分自相交和非自相交的曲面。具备 Schwartz 的几何视觉才能够克服这个困难,但这是很罕见的。

在 Schwartz 的证明中,他设法将问题分解为可以处理的部分,每个部分基本上只需要基本几何知识来解决。

其实,在找到成功的策略之前,Schwartz 在几年里断断续续地尝试了其他策略。他最近决定重新审视这个问题,因为他一直觉得他在 2021 年的一篇论文中使用的方法应该是有效的。
 
显然,他的直觉是正确的。当他重新研究这个问题时,他注意到在以前的论文中涉及 T 型图的引理中存在一个错误。通过纠正这个错误,Schwartz 迅速而轻松地证明了 Halpern-Weaver 猜想。Schwartz 自己也说,如果不是因为那个错误,他三年前就能解决了这个问题。制作莫比乌斯环,最少需要多长纸带?50年来的谜题被解开了
                                                          论文中的 T 型图
 
在本次证明中,T 型图引理是关键。这个引理基于一个基本的想法:莫比乌斯带上有些直线被称为直纹曲面。Schwartz 指出在空间中的纸带,即使它在某些复杂的位置,在每个点上仍然都有一条直线穿过它,你可以想象画这些直线,让它们横穿莫比乌斯带并在两端触及边界。

在之前的工作中,Schwartz 确定了两条互相平行并且在同一个平面上的直线,它们在每个莫比乌斯带上形成了一个 T 型图案。他指出,这些东西存在并不明显,需要证明它们存在,这也是证明引理的第一部分。

下一步是建立并解决优化问题,需要沿着带宽度延伸的线段以一个角度切开一个莫比乌斯带,并得到最终的形状。Schwartz 在 2021 年的论文中错误地得出了这个形状是平行四边形的结论。

今年夏天,Schwartz 决定尝试不同的策略。他开始尝试把莫比乌斯带压扁。如果能够证明可以将它们压成平面,这个复杂的问题将简化为一个更容易处理的平面问题。在实验中,Schwartz 切开了一个莫比乌斯带,并意识到它不是平行四边形,而是一个梯形。

最终,这个 50 年来的问题得到了解答。尝试解决一个长期未解决的问题是需要勇气的,而这正是 Schwartz 在数学上的优势:他喜欢研究那些看起来相对容易但其实很难的问题。他会看到以前研究者没有注意到的问题。

参考链接:https://www.scientificamerican.com/article/mathematicians-solve-50-year-old-moebius-strip-puzzle1/

以上是制作莫比乌斯环,最少需要多长纸带?50年来的谜题被解开了的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它们
4 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

ControlNet作者又出爆款!一张图生成绘画全过程,两天狂揽1.4k Star ControlNet作者又出爆款!一张图生成绘画全过程,两天狂揽1.4k Star Jul 17, 2024 am 01:56 AM

同样是图生视频,PaintsUndo走出了不一样的路线。ControlNet作者LvminZhang又开始整活了!这次瞄准绘画领域。新项目PaintsUndo刚上线不久,就收获1.4kstar(还在疯狂涨)。项目地址:https://github.com/lllyasviel/Paints-UNDO通过该项目,用户输入一张静态图像,PaintsUndo就能自动帮你生成整个绘画的全过程视频,从线稿到成品都有迹可循。绘制过程,线条变化多端甚是神奇,最终视频结果和原图像非常相似:我们再来看一个完整的绘

登顶开源AI软件工程师榜首,UIUC无Agent方案轻松解决SWE-bench真实编程问题 登顶开源AI软件工程师榜首,UIUC无Agent方案轻松解决SWE-bench真实编程问题 Jul 17, 2024 pm 10:02 PM

AIxiv专栏是本站发布学术、技术内容的栏目。过去数年,本站AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com这篇论文的作者均来自伊利诺伊大学香槟分校(UIUC)张令明老师团队,包括:StevenXia,四年级博士生,研究方向是基于AI大模型的自动代码修复;邓茵琳,四年级博士生,研究方

从RLHF到DPO再到TDPO,大模型对齐算法已经是「token-level」 从RLHF到DPO再到TDPO,大模型对齐算法已经是「token-level」 Jun 24, 2024 pm 03:04 PM

AIxiv专栏是本站发布学术、技术内容的栏目。过去数年,本站AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com在人工智能领域的发展过程中,对大语言模型(LLM)的控制与指导始终是核心挑战之一,旨在确保这些模型既强大又安全地服务于人类社会。早期的努力集中于通过人类反馈的强化学习方法(RL

OpenAI超级对齐团队遗作:两个大模型博弈一番,输出更好懂了 OpenAI超级对齐团队遗作:两个大模型博弈一番,输出更好懂了 Jul 19, 2024 am 01:29 AM

如果AI模型给的答案一点也看不懂,你敢用吗?随着机器学习系统在更重要的领域得到应用,证明为什么我们可以信任它们的输出,并明确何时不应信任它们,变得越来越重要。获得对复杂系统输出结果信任的一个可行方法是,要求系统对其输出产生一种解释,这种解释对人类或另一个受信任的系统来说是可读的,即可以完全理解以至于任何可能的错误都可以被发现。例如,为了建立对司法系统的信任,我们要求法院提供清晰易读的书面意见,解释并支持其决策。对于大型语言模型来说,我们也可以采用类似的方法。不过,在采用这种方法时,确保语言模型生

arXiv论文可以发「弹幕」了,斯坦福alphaXiv讨论平台上线,LeCun点赞 arXiv论文可以发「弹幕」了,斯坦福alphaXiv讨论平台上线,LeCun点赞 Aug 01, 2024 pm 05:18 PM

干杯!当论文讨论细致到词句,是什么体验?最近,斯坦福大学的学生针对arXiv论文创建了一个开放讨论论坛——alphaXiv,可以直接在任何arXiv论文之上发布问题和评论。网站链接:https://alphaxiv.org/其实不需要专门访问这个网站,只需将任何URL中的arXiv更改为alphaXiv就可以直接在alphaXiv论坛上打开相应论文:可以精准定位到论文中的段落、句子:右侧讨论区,用户可以发表问题询问作者论文思路、细节,例如:也可以针对论文内容发表评论,例如:「给出至

公理训练让LLM学会因果推理:6700万参数模型比肩万亿参数级GPT-4 公理训练让LLM学会因果推理:6700万参数模型比肩万亿参数级GPT-4 Jul 17, 2024 am 10:14 AM

把因果链展示给LLM,它就能学会公理。AI已经在帮助数学家和科学家做研究了,比如著名数学家陶哲轩就曾多次分享自己借助GPT等AI工具研究探索的经历。AI要在这些领域大战拳脚,强大可靠的因果推理能力是必不可少的。本文要介绍的这项研究发现:在小图谱的因果传递性公理演示上训练的Transformer模型可以泛化用于大图谱的传递性公理。也就是说,如果让Transformer学会执行简单的因果推理,就可能将其用于更为复杂的因果推理。该团队提出的公理训练框架是一种基于被动数据来学习因果推理的新范式,只有演示

黎曼猜想显着突破!陶哲轩强推MIT、牛津新论文,37岁菲尔兹奖得主参与 黎曼猜想显着突破!陶哲轩强推MIT、牛津新论文,37岁菲尔兹奖得主参与 Aug 05, 2024 pm 03:32 PM

最近,被称为千禧年七大难题之一的黎曼猜想迎来了新突破。黎曼猜想是数学中一个非常重要的未解决问题,与素数分布的精确性质有关(素数是那些只能被1和自身整除的数字,它们在数论中扮演着基础性的角色)。在当今的数学文献中,已有超过一千条数学命题以黎曼猜想(或其推广形式)的成立为前提。也就是说,黎曼猜想及其推广形式一旦被证明,这一千多个命题将被确立为定理,对数学领域产生深远的影响;而如果黎曼猜想被证明是错误的,那么这些命题中的一部分也将随之失去其有效性。新的突破来自MIT数学教授LarryGuth和牛津大学

首个基于Mamba的MLLM来了!模型权重、训练代码等已全部开源 首个基于Mamba的MLLM来了!模型权重、训练代码等已全部开源 Jul 17, 2024 am 02:46 AM

AIxiv专栏是本站发布学术、技术内容的栏目。过去数年,本站AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com。引言近年来,多模态大型语言模型(MLLM)在各个领域的应用取得了显着的成功。然而,作为许多下游任务的基础模型,当前的MLLM由众所周知的Transformer网络构成,这种网

See all articles