目录
数据质量是关键
医疗保健中的数据质量
医疗保健技术与创新
总结
首页 科技周边 人工智能 为什么医疗数据质量在人工智能时代至关重要

为什么医疗数据质量在人工智能时代至关重要

Oct 07, 2023 pm 08:49 PM
人工智能 医疗保健

为什么医疗数据质量在人工智能时代至关重要

有效的医疗数据分析需要考虑数据质量的主观性。数据质量的好坏将直接影响从数据中获取的信息的准确性、可靠性和有效性。如果数据质量较差,可能会导致错误的诊断、无效的治疗,并增加患者和提供者的风险。因此,对于希望通过数据分析来提高医疗保健结果和性能的医疗保健管理人员来说,识别和解决关键的数据质量问题至关重要

数据质量是关键

识别关键数据质量问题的第一步是确定数据质量对于特定上下文和目标意味着什么。可以根据准确性、完整性、一致性、相关性和完整性等维度来评估数据质量。根据数据分析的类型和目的,某些维度可能比其他维度更重要。

越来越多的医疗保健创新使医生能够系统地为患者提供更好的护理。当医生学习其他医生的经验时,我们,作为病人,意识到医疗保健是复杂的,并不总是有效的。个别医生从治疗病人的过程中学习,但这些信息很少被其他医生进一步用于改善医疗服务。

然而,如果医疗保健不采用常规护理进行学习,医生将会依靠哪些数据来做出重要决策呢?

医疗保健的主要方法是使用明确的方法。随机试验的时间跨度为数年,对结果进行分析,并逐渐应用于临床实践。虽然可以确定治疗的安全性和有效性,但是没有足够的信息来比较不同的治疗方案,并找出哪种治疗效果最好

简而言之,虽然此类试验中捕获的信息很好,但还不够。医疗保健领域没有足够的数据来进行定制治疗或快速学习。

医疗保健中的数据质量

医疗保健中的数据质量有助于确定医疗服务支付的成本。随着人工智能(AI)、数据分析、医疗物联网(IoMT)和数据可视化工具的日益普及,数据质量在医疗保健中的重要性不容低估。

在医疗保健行业,数据质量是指医疗机构收集的数据具备以下特征:

  • 准确性:只有当信息的每个详细条目都正确且正确呈现时,数据才被认为是准确的。
  • 完整性:完整性意味着提供商收集的所有信息均已记录并易于访问。
  • 相关性:当收集的数据用于医疗环境以及医疗目的时,就满足相关性因素。
  • 合法性:表明数据收集、处理、存储和使用过程符合所有法律要求和标准。
  • 一致性:只有当数据不断更新并反映患者的健康状况和医疗干预措施时,才能认为数据是一致的。
  • 可访问性:当医务人员能够完全访问他们所需的详细信息并可以用来承担其职责时,就满足了可访问性标准。

从各种解决方案积累的数据质量可能会影响个人和全球层面的决策过程。如果收集的数据缺乏上述任何属性或者数据质量较差,则意味着使用此类错误数据可能会给患者、医院和研究人员带来负面后果

医疗保健技术与创新

医疗保健作为一个行业正在开始向现实世界的护理学习。虽然基础设施一直就位,但最近数据——电子健康记录、人工智能等技术和计算能力的融合,创造了一个可以实现和预期学习型医疗系统的环境。

医疗保健可以将从日常护理中学到的知识转化为数据。这些知识可以进一步帮助我们更好地理解每个人的独特特征。它有助于认识到独特特征如何影响可用治疗方案的有效性,并为个人提供量身定制的护理

在医疗保健领域,IT解决方案的应用速度令人难以置信。这导致了许多不断变化的趋势的出现,并促使持续的进步和改进。然而,这些趋势可能会对数据质量管理产生影响

然而,从糟糕的数据中吸取错误的教训不仅是一个问题,而且是一个值得关注的严重问题。行业根据这些建议做出决策。这可能会对患者造成严重伤害,他们对证据有效性的信心可能会动摇。

这里的教训很明确:如果医疗保健部门要从常规护理中学习,他们必须通过确保足够高的数据质量来解释建议来保护患者。

协助收集和处理高质量的医疗数据的新的IT解决方案,在医疗数据管理方面取得了重大进步。将见解与职责结合起来,有助于保护患者。在这个过程中,他们可以定义足够供其使用的数据质量标准和现实世界的证据。这些标准可以鼓励包括医生、保险公司和监管机构在内的关键决策者,决定现实世界的证据是否足够可信,以影响医疗保健的标准程序

利用高质量数据进行操作,可以提高医疗保健提供者的预测能力,避免可能导致患者结果不佳的情况。同时,这也有助于改善医院的管理和人员管理。数据标准的质量将进一步有助于衡量准确性、完整性和可追溯性

总结

在当前的学习型医疗保健系统中,很少有治疗决策是基于现实世界的证据来指导的。每个治疗决策都受到以往实践的影响。如果不严格强调准确性、完整性和可追溯性,可能会存在重大风险。并非所有生成医疗保健证据的公司都采用高质量数据或衡量数据质量。依赖基于证据的低质量数据可能会带来灾难性的后果

但医疗保健的光明未来充满希望。

医疗机构正在采用现代技术来从最可靠的医疗数据中学习。但是,在这种情况下,数据质量必须至关重要。

对于医疗保健行业而言,转向学习型医疗系统变得比以往更加重要。电子健康数据、计算能力和人工智能的可用性将带来革新。然而,对于医疗保健行业的专业人士而言,学会区分高质量数据和低质量数据,并确保他们从中吸取正确的教训同样重要

以上是为什么医疗数据质量在人工智能时代至关重要的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 Jun 28, 2024 am 03:51 AM

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

使用Rag和Sem-Rag提供上下文增强AI编码助手 使用Rag和Sem-Rag提供上下文增强AI编码助手 Jun 10, 2024 am 11:08 AM

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 Jun 11, 2024 pm 03:57 PM

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

七个很酷的GenAI & LLM技术性面试问题 七个很酷的GenAI & LLM技术性面试问题 Jun 07, 2024 am 10:06 AM

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 Jul 25, 2024 am 06:42 AM

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

你所不知道的机器学习五大学派 你所不知道的机器学习五大学派 Jun 05, 2024 pm 08:51 PM

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 Jul 17, 2024 pm 06:37 PM

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

SK 海力士 8 月 6 日将展示 AI 相关新品:12 层 HBM3E、321-high NAND 等 SK 海力士 8 月 6 日将展示 AI 相关新品:12 层 HBM3E、321-high NAND 等 Aug 01, 2024 pm 09:40 PM

本站8月1日消息,SK海力士今天(8月1日)发布博文,宣布将出席8月6日至8日,在美国加利福尼亚州圣克拉拉举行的全球半导体存储器峰会FMS2024,展示诸多新一代产品。未来存储器和存储峰会(FutureMemoryandStorage)简介前身是主要面向NAND供应商的闪存峰会(FlashMemorySummit),在人工智能技术日益受到关注的背景下,今年重新命名为未来存储器和存储峰会(FutureMemoryandStorage),以邀请DRAM和存储供应商等更多参与者。新产品SK海力士去年在

See all articles