首页 科技周边 人工智能 文生3D模型大突破!MVDream重磅来袭,一句话生成超逼真三维模型

文生3D模型大突破!MVDream重磅来袭,一句话生成超逼真三维模型

Oct 11, 2023 am 11:37 AM
数据 训练

这真是太不可思议了!

现在只需打几个字就能轻松地创造出精美而高质量的3D模型了?

这不,国外一篇博客引爆网络,把一个叫MVDream的东西摆到了我们面前。

用户只需要寥寥数语,就可以创造出一个栩栩如生的3D模型。

文生3D模型大突破!MVDream重磅来袭,一句话生成超逼真三维模型

而且和之前不同的是,MVDream看起来是真的「懂」物理。

下面就来看看这个MVDream有多神奇吧~

MVDream

小哥表示,大模型时代,我们已经看到了太多太多文本生成模型、图片生成模型。而且这些模型的性能也越来越强大。

我们后来还亲眼目睹了文生视频模型的诞生,当然还有今天要提到的3D模型

想象一下,只需输入一句话,就能生成一个仿佛真实世界中存在的物体模型,甚至还包含所有必要的细节,这样的场景有多酷啊

而且这绝对不是一件简单的事,尤其是用户需要生成的模型所呈现的细节要足够逼真。

先来看看效果~

文生3D模型大突破!MVDream重磅来袭,一句话生成超逼真三维模型


在同一个提示下,最右边展示的是MVDream的成品

肉眼可见5个模型的差距。前几个模型完全违背了客观事实,只有从某几个角度看才是对的。

比如前四张图片,生成的模型居然有不止两只耳朵。而第四张图片虽然看起来细节更丰满一点,但是转到某个角度我们能发现,人物的脸是凹进去的,上面还插着一只耳朵。

谁懂啊,小编一下就想起了之前很火的小猪佩奇正视图。

文生3D模型大突破!MVDream重磅来袭,一句话生成超逼真三维模型

这是一种情况,从某些角度来看是向你展示的,但绝对不能从其他角度去看,会有生命危险

可最右边MVDream的生成模型显然不一样。无论3D模型怎样转动,你都不会觉得有任何反常规的地方。

这也就是之前提到的,MVDream对物理常识了如指掌,不会为了确保每个视图都有两只耳朵而制造一些奇奇怪怪的东西

小哥指出,判断一个3D模型是否成功的关键在于观察其不同视角是否逼真且质量是否高

而且还要保证模型在空间上的连贯性,而不是像上面多个耳朵的模型那样。

生成3D模型的主要方法之一,就是对摄像机的视角进行模拟,然后生成某一视角下所能看到的东西。

换个词,这就是所谓的2D提升(2D lifting)。就是将不同的视角拼接在一起,形成最终的3D模型。

出现上面多耳的情况,就是因为生成模型对整个物体在三维空间的样态信息掌握的不充分。而MVDream恰恰就是在这方面往前迈了一大步。

这个新模型解决了之前一直存在的3D视角下的一致性问题

分数蒸馏采样

这种方法被称为分数蒸馏采样(score distillation sampling),是由DreamFusion开发的

在开始学习分数蒸馏采样技术之前,我们需要先了解一下该方法所采用的架构

换句话说,这实际上只是另一种二维图像扩散模型,类似的还有DALLE、MidJourney和Stable Diffusion模型

更具体地说,一切的一切都是从预训练好的DreamBooth模型开始的,DreamBooth是一个基于Stable Diffusion生图的开源模型。

文生3D模型大突破!MVDream重磅来袭,一句话生成超逼真三维模型

改变来了,这意味着事情发生了转变

研究团队后续所做的是,直接渲染一组多视角图像,而不是只渲染一张图像,这一步需要有各种物体的三维数据集才可以完成。

在这里,研究人员从数据集中获取了三维物体的多个视图,利用它们来训练模型,再使其向后生成这些视图。

具体做法是将下图中的蓝色自注意块改为三维自注意块,也就是说,研究人员只需要增加一个维度来重建多个图像,而不是一个图像。

在下图中,我们可以看到每个视图的模型中都输入了摄像机和时间步(timestep),以帮助模型了解哪个图像将用在哪里,以及需要生成的是哪种视图

现在,所有图像都连接在一起,生成也同样在一起完成。因此它们就可以共享信息,更好地理解全局的情况。

首先,将文本输入模型,然后通过训练模型从数据集中准确地重建物体

而这里也就是研究团队应用多视图分数蒸馏采样过程的地方。

文生3D模型大突破!MVDream重磅来袭,一句话生成超逼真三维模型

现在,有了一个多视图的扩散模型,团队可以生成一个物体的多个视图了。

接下来,我们需要使用这些视图来重建一个与真实世界一致的三维模型,而不仅仅是视图

这里需要使用NeRF(neural radiance fields,神经辐射场)来实现,就像前面提到的DreamFusion一样。

文生3D模型大突破!MVDream重磅来袭,一句话生成超逼真三维模型

在这一步中,我们的目标是冻结之前训练好的多视角扩散模型。换句话说,我们在这一步中只是使用上面各个视角的图片,而不再进行训练

在初始渲染的指导下,研究人员开始使用多视角扩散模型生成一些带有噪声的初始图像版本

为了让模型了解到需要生成不同版本的图像,研究人员添加了噪声,但同时仍然能够接收到背景信息

接下来,可以利用这个模型进一步生成更高质量的图像

添加用于生成该图像的图像,并移除我们手动添加的噪声,以便在下一步中使用该结果来指导和改进NeRF模型。

为了在下一步中生成更好的结果,这些步骤的目的是更好地理解NeRF模型应该集中在图像的哪个部分

不断重复这个过程,直到生成一个令人满意的3D模型

文生3D模型大突破!MVDream重磅来袭,一句话生成超逼真三维模型


而对于多视角扩散模型的图像生成质量的评估,以及不同的设计会如何影响其性能的判断,该团队是这么操作的。

首先,他们比较了用于建立跨视角一致性模型的注意力模块的选择。

这些选项包括:

(1)视频扩散模型中广泛使用的一维时间自注意;

(2)在现有模型中增加全新的三维自注意模块;

(3)重新使用现有的二维自注意模块进行三维注意。

为了准确展示这些模块之间的差异,在这项实验中,研究人员采用了8帧的90度视角变化来训练模型,以更贴近视频的设置

在实验中,研究团队同时保持了较高的图像分辨率,即512×512作为原始的标清模型。如下图所示,研究人员发现,即使在静态场景中进行了如此有限的视角变化,时间自注意力仍然会受到内容偏移的影响,无法保持视角的一致性

团队假设,这是因为时间注意力只能在不同帧的相同像素之间交换信息,而在视点变化时,相应像素之间可能相距甚远。

另一方面,在不学习一致性的情况下,添加新的三维注意会导致严重的质量下降。

研究人员认为,这是因为从头开始学习新的参数会消耗更多的训练数据和时间,而对于这种三维模型有限的情况并不适用。他们提出了重新使用二维自注意机制的策略,以实现最佳的一致性而不降低生成质量

团队还注意到,如果将图像大小减小到256,视图数减小到4,这些模块之间的差异会小得多。然而,为了达到最佳一致性,研究人员在以下实验中根据初步观察做出了选择。

文生3D模型大突破!MVDream重磅来袭,一句话生成超逼真三维模型

此外,研究人员在threestudio(thr)库中实现了多视角的分数蒸馏采样,并引入了多视角扩散的引导。该库在一个统一的框架下实现了最先进的文本到三维模型的生成方法

研究人员使用threestudio中的隐式容积(implicit-volume)作为三维表示的实现方式,其中包括多分辨率的哈希网格(hash-grid)

在研究摄像机视图时,研究人员采用了与渲染三维数据集时完全相同的方式对摄像机进行了俩人采样

在此之外,研究人员还对3D模型进行了10000步的优化,使用了AdamW优化器,并将学习率设置为0.01

在分数蒸馏采样中,最初的8000步中,最大和最小时间步长分别从0.98步降至0.5步和0.02步

渲染的起始分辨率是64×64,经过5000步逐渐增加至256×256

以下是更多的案例:

文生3D模型大突破!MVDream重磅来袭,一句话生成超逼真三维模型

研究团队利用二维文本到图像模型,进行多视角合成,并通过迭代的过程,创建了文本到3D模型的方法

这种新方法目前还存在一些局限性,最主要的问题是生成的图像分辨率只有256x256像素,可以说非常低了

此外,研究人员还指出,执行这项任务的数据集的大小在某种程度上一定会限制这种方法的通用性,因为数据集的太小的话,就没办法更逼真的反应我们这个复杂的世界。

以上是文生3D模型大突破!MVDream重磅来袭,一句话生成超逼真三维模型的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

使用ddrescue在Linux上恢复数据 使用ddrescue在Linux上恢复数据 Mar 20, 2024 pm 01:37 PM

DDREASE是一种用于从文件或块设备(如硬盘、SSD、RAM磁盘、CD、DVD和USB存储设备)恢复数据的工具。它将数据从一个块设备复制到另一个块设备,留下损坏的数据块,只移动好的数据块。ddreasue是一种强大的恢复工具,完全自动化,因为它在恢复操作期间不需要任何干扰。此外,由于有了ddasue地图文件,它可以随时停止和恢复。DDREASE的其他主要功能如下:它不会覆盖恢复的数据,但会在迭代恢复的情况下填补空白。但是,如果指示工具显式执行此操作,则可以将其截断。将数据从多个文件或块恢复到单

开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计! 开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计! Apr 03, 2024 pm 12:04 PM

0.这篇文章干了啥?提出了DepthFM:一个多功能且快速的最先进的生成式单目深度估计模型。除了传统的深度估计任务外,DepthFM还展示了在深度修复等下游任务中的最先进能力。DepthFM效率高,可以在少数推理步骤内合成深度图。下面一起来阅读一下这项工作~1.论文信息标题:DepthFM:FastMonocularDepthEstimationwithFlowMatching作者:MingGui,JohannesS.Fischer,UlrichPrestel,PingchuanMa,Dmytr

谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择 谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择 Apr 01, 2024 pm 07:46 PM

谷歌力推的JAX在最近的基准测试中性能已经超过Pytorch和TensorFlow,7项指标排名第一。而且测试并不是在JAX性能表现最好的TPU上完成的。虽然现在在开发者中,Pytorch依然比Tensorflow更受欢迎。但未来,也许有更多的大模型会基于JAX平台进行训练和运行。模型最近,Keras团队为三个后端(TensorFlow、JAX、PyTorch)与原生PyTorch实现以及搭配TensorFlow的Keras2进行了基准测试。首先,他们为生成式和非生成式人工智能任务选择了一组主流

你好,电动Atlas!波士顿动力机器人复活,180度诡异动作吓坏马斯克 你好,电动Atlas!波士顿动力机器人复活,180度诡异动作吓坏马斯克 Apr 18, 2024 pm 07:58 PM

波士顿动力Atlas,正式进入电动机器人时代!昨天,液压Atlas刚刚「含泪」退出历史舞台,今天波士顿动力就宣布:电动Atlas上岗。看来,在商用人形机器人领域,波士顿动力是下定决心要和特斯拉硬刚一把了。新视频放出后,短短十几小时内,就已经有一百多万观看。旧人离去,新角色登场,这是历史的必然。毫无疑问,今年是人形机器人的爆发年。网友锐评:机器人的进步,让今年看起来像人类的开幕式动作、自由度远超人类,但这真不是恐怖片?视频一开始,Atlas平静地躺在地上,看起来应该是仰面朝天。接下来,让人惊掉下巴

iPhone上的蜂窝数据互联网速度慢:修复 iPhone上的蜂窝数据互联网速度慢:修复 May 03, 2024 pm 09:01 PM

在iPhone上面临滞后,缓慢的移动数据连接?通常,手机上蜂窝互联网的强度取决于几个因素,例如区域、蜂窝网络类型、漫游类型等。您可以采取一些措施来获得更快、更可靠的蜂窝互联网连接。修复1–强制重启iPhone有时,强制重启设备只会重置许多内容,包括蜂窝网络连接。步骤1–只需按一次音量调高键并松开即可。接下来,按降低音量键并再次释放它。步骤2–该过程的下一部分是按住右侧的按钮。让iPhone完成重启。启用蜂窝数据并检查网络速度。再次检查修复2–更改数据模式虽然5G提供了更好的网络速度,但在信号较弱

快手版Sora「可灵」开放测试:生成超120s视频,更懂物理,复杂运动也能精准建模 快手版Sora「可灵」开放测试:生成超120s视频,更懂物理,复杂运动也能精准建模 Jun 11, 2024 am 09:51 AM

什么?疯狂动物城被国产AI搬进现实了?与视频一同曝光的,是一款名为「可灵」全新国产视频生成大模型。Sora利用了相似的技术路线,结合多项自研技术创新,生产的视频不仅运动幅度大且合理,还能模拟物理世界特性,具备强大的概念组合能力和想象力。数据上看,可灵支持生成长达2分钟的30fps的超长视频,分辨率高达1080p,且支持多种宽高比。另外再划个重点,可灵不是实验室放出的Demo或者视频结果演示,而是短视频领域头部玩家快手推出的产品级应用。而且主打一个务实,不开空头支票、发布即上线,可灵大模型已在快影

超级智能体生命力觉醒!可自我更新的AI来了,妈妈再也不用担心数据瓶颈难题 超级智能体生命力觉醒!可自我更新的AI来了,妈妈再也不用担心数据瓶颈难题 Apr 29, 2024 pm 06:55 PM

哭死啊,全球狂炼大模型,一互联网的数据不够用,根本不够用。训练模型搞得跟《饥饿游戏》似的,全球AI研究者,都在苦恼怎么才能喂饱这群数据大胃王。尤其在多模态任务中,这一问题尤为突出。一筹莫展之际,来自人大系的初创团队,用自家的新模型,率先在国内把“模型生成数据自己喂自己”变成了现实。而且还是理解侧和生成侧双管齐下,两侧都能生成高质量、多模态的新数据,对模型本身进行数据反哺。模型是啥?中关村论坛上刚刚露面的多模态大模型Awaker1.0。团队是谁?智子引擎。由人大高瓴人工智能学院博士生高一钊创立,高

特斯拉机器人进厂打工,马斯克:手的自由度今年将达到22个! 特斯拉机器人进厂打工,马斯克:手的自由度今年将达到22个! May 06, 2024 pm 04:13 PM

特斯拉机器人Optimus最新视频出炉,已经可以在厂子里打工了。正常速度下,它分拣电池(特斯拉的4680电池)是这样的:官方还放出了20倍速下的样子——在小小的“工位”上,拣啊拣啊拣:这次放出的视频亮点之一在于Optimus在厂子里完成这项工作,是完全自主的,全程没有人为的干预。并且在Optimus的视角之下,它还可以把放歪了的电池重新捡起来放置,主打一个自动纠错:对于Optimus的手,英伟达科学家JimFan给出了高度的评价:Optimus的手是全球五指机器人里最灵巧的之一。它的手不仅有触觉

See all articles