生成模型构建交互式现实世界模拟器,LeCun觉得非常酷
基于互联网数据训练的生成模型彻底改变了文本、图像和视频内容的创建方式。有研究者预测,也许生成模型的下一个里程碑是能够模拟人类体验世界的方方面面,比如在公路上如何驾驶汽车,又比如如何准备饭菜。
现如今,借助非常全面的真实世界模拟器(real-world simulator),人类可以与不同场景和物体进行交互,机器人也可以从模拟经验中进行学习,从而避免出现物理损坏的风险。
然而,构建这样一个真实世界模拟器的主要障碍之一在于可用的数据集。尽管互联网上有数十亿的文本、图像和视频片段,但不同的数据集涵盖不同的信息轴,必须将这些数据集整合在一起才能模拟出对世界的真实体验。例如,成对的文本图像数据包含丰富的场景和对象,但很少有动作;视频字幕和问答数据包含丰富的高级活动描述,但很少有低级运动细节;人类活动数据包含丰富的人类动作,但很少有机械运动;而机器人数据包含丰富的机器人动作,但数量有限
以上列举的信息差异是自然的且难以克服,这给构建一个旨在捕捉现实世界真实体验的真实世界模拟器带来了困难。
本文中,来自 UC 伯克利、Google DeepMind、MIT 等机构的研究者探索了通过生成模型学习真实世界交互的通用模拟器 UniSim,迈出了构建通用模拟器的第一步。例如 UniSim 可以通过模拟「打开抽屉」等高级指令和低级指令的视觉结果来模拟人类和智能体如何与世界交互。
- 论文地址:https://arxiv.org/pdf/2310.06114.pdf
- 论文主页:https://universal-simulator.github.io/unisim/
本文将大量数据(包括互联网文本 - 图像对,来自导航、人类活动、机器人动作等的丰富数据,以及来自模拟和渲染的数据)结合到一个条件视频生成框架中。然后通过仔细编排沿不同轴的丰富数据,本文表明 UniSim 可以成功地合并不同轴数据的经验并泛化到数据之外,通过对静态场景和对象的细粒度运动控制来实现丰富的交互。
下面视频演示了 UniSim 如何模拟具有长交互视界的示例,视频显示 UniSim 一口气模拟了机器人八个动作指令:
UniSim 对人类动作的模拟:
UniSim 对 RL 策略的模拟部署如下所示:
Meta首席AI科学家Yann LeCun和英伟达高级研究科学家Jim Fan等行业专家对这项研究进行了转发。LeCun对此给出了一个“酷”的评价
Jim Fan表示,这项工作非常有趣。视频扩散模型被用作数据驱动的物理模拟,其中智能体可以规划、探索和学习最优行动,而无需接触机器人硬件或造成任何损害。可以说,LLM不仅是一个操作系统,还是一个完整的现实模拟器
论文的第一作者,加州大学伯克利分校的博士生Sherry Yang表示,“学习现实世界模型正在成为现实。”
模拟现实世界的交互
根据图3所示,UniSim可以模拟厨房场景中的一系列丰富动作,包括洗手、拿碗、切胡萝卜和擦干手。图3右上方显示了不同的开关,而图3底部则展示了两个导航场景
需要被改写的内容是:对应于图3右下方的导航场景
对应上图3右下的导航场景
以下图 4 展示了一个 UniSim 自回归地顺序模拟 8 个交互的例子,在长程模拟方面
UniSim不仅支持丰富的动作和长程交互,还能够实现高度多样化和随机的环境变换。例如,在移除顶部的毛巾后,显示的对象具有多样性(见下图5左)
UniSim 在真实世界迁移的结果。UniSim 的真正价值在于模拟现实世界,图 7 显示了 VLM 生成的语言规划,UniSim 根据语言规划生成的视频,以及在真实机器人上的执行情况。
除了测试 UniSim 在真实世界的迁移能力之外,本文还进行了基于模拟器的评估,结果如表 2 所示:
用于强化学习的真实世界模拟器
实验还评估了 UniSim 在模拟真实机器人执行各种动作方面的质量如何,机器人通过重复执行低级控制操作约 20-30 个步骤来左、右、下、上移动端点 。表 3 显示,RL 训练显着提高了 VLA 策略在各种任务中的性能,尤其是在指向蓝色块等任务中。然后,本文直接将在 UniSim 中训练的 RL 策略零样本部署到真实机器人上,如图 8(底行)所示。
以上是生成模型构建交互式现实世界模拟器,LeCun觉得非常酷的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

想象一下,一个人工智能模型,不仅拥有超越传统计算的能力,还能以更低的成本实现更高效的性能。这不是科幻,DeepSeek-V2[1],全球最强开源MoE模型来了。DeepSeek-V2是一个强大的专家混合(MoE)语言模型,具有训练经济、推理高效的特点。它由236B个参数组成,其中21B个参数用于激活每个标记。与DeepSeek67B相比,DeepSeek-V2性能更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,最大生成吞吐量提高到5.76倍。DeepSeek是一家探索通用人工智

AI,的确正在改变数学。最近,一直十分关注这个议题的陶哲轩,转发了最近一期的《美国数学学会通报》(BulletinoftheAmericanMathematicalSociety)。围绕「机器会改变数学吗?」这个话题,众多数学家发表了自己的观点,全程火花四射,内容硬核,精彩纷呈。作者阵容强大,包括菲尔兹奖得主AkshayVenkatesh、华裔数学家郑乐隽、纽大计算机科学家ErnestDavis等多位业界知名学者。AI的世界已经发生了天翻地覆的变化,要知道,其中很多文章是在一年前提交的,而在这一

谷歌力推的JAX在最近的基准测试中性能已经超过Pytorch和TensorFlow,7项指标排名第一。而且测试并不是在JAX性能表现最好的TPU上完成的。虽然现在在开发者中,Pytorch依然比Tensorflow更受欢迎。但未来,也许有更多的大模型会基于JAX平台进行训练和运行。模型最近,Keras团队为三个后端(TensorFlow、JAX、PyTorch)与原生PyTorch实现以及搭配TensorFlow的Keras2进行了基准测试。首先,他们为生成式和非生成式人工智能任务选择了一组主流

波士顿动力Atlas,正式进入电动机器人时代!昨天,液压Atlas刚刚「含泪」退出历史舞台,今天波士顿动力就宣布:电动Atlas上岗。看来,在商用人形机器人领域,波士顿动力是下定决心要和特斯拉硬刚一把了。新视频放出后,短短十几小时内,就已经有一百多万观看。旧人离去,新角色登场,这是历史的必然。毫无疑问,今年是人形机器人的爆发年。网友锐评:机器人的进步,让今年看起来像人类的开幕式动作、自由度远超人类,但这真不是恐怖片?视频一开始,Atlas平静地躺在地上,看起来应该是仰面朝天。接下来,让人惊掉下巴

本月初,来自MIT等机构的研究者提出了一种非常有潜力的MLP替代方法——KAN。KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。KAN与MLP一样具有强大的数学基础,MLP基于通用逼近定理,而KAN基于Kolmogorov-Arnold表示定理。如下图所示,KAN在边上具

特斯拉机器人Optimus最新视频出炉,已经可以在厂子里打工了。正常速度下,它分拣电池(特斯拉的4680电池)是这样的:官方还放出了20倍速下的样子——在小小的“工位”上,拣啊拣啊拣:这次放出的视频亮点之一在于Optimus在厂子里完成这项工作,是完全自主的,全程没有人为的干预。并且在Optimus的视角之下,它还可以把放歪了的电池重新捡起来放置,主打一个自动纠错:对于Optimus的手,英伟达科学家JimFan给出了高度的评价:Optimus的手是全球五指机器人里最灵巧的之一。它的手不仅有触觉

目标检测在自动驾驶系统当中是一个比较成熟的问题,其中行人检测是最早得以部署算法之一。在多数论文当中已经进行了非常全面的研究。然而,利用鱼眼相机进行环视的距离感知相对来说研究较少。由于径向畸变大,标准的边界框表示在鱼眼相机当中很难实施。为了缓解上述描述,我们探索了扩展边界框、椭圆、通用多边形设计为极坐标/角度表示,并定义一个实例分割mIOU度量来分析这些表示。所提出的具有多边形形状的模型fisheyeDetNet优于其他模型,并同时在用于自动驾驶的Valeo鱼眼相机数据集上实现了49.5%的mAP

写在前面项目链接:https://nianticlabs.github.io/mickey/给定两张图片,可以通过建立图片之间的对应关系来估计它们之间的相机姿态。通常,这些对应关系是二维到二维的,而我们估计的姿态在尺度上是不确定的。一些应用,例如随时随地实现即时增强现实,需要尺度度量的姿态估计,因此它们依赖于外部的深度估计器来恢复尺度。本文提出了MicKey,这是一个关键点匹配流程,能够够预测三维相机空间中的度量对应关系。通过学习跨图像的三维坐标匹配,我们能够在没有深度测试的情况下推断出度量相对
