目录
论文思路:
主要贡献:
网络设计:
实验结果:
引用:
首页 科技周边 人工智能 MotionLM:多智能体运动预测的语言建模技术

MotionLM:多智能体运动预测的语言建模技术

Oct 13, 2023 pm 12:09 PM
模型 智能

本文经自动驾驶之心公众号授权转载,转载请联系出处。

原标题:MotionLM: Multi-Agent Motion Forecasting as Language Modeling

论文链接:https://arxiv.org/pdf/2309.16534.pdf

作者单位:Waymo

会议:ICCV 2023

MotionLM:多智能体运动预测的语言建模技术

论文思路:

对于自动驾驶车辆安全规划来说,可靠地预测道路代理未来行为是至关重要的。本研究将连续轨迹表示为离散运动令牌序列,并将多智能体运动预测视为语言建模任务。我们提出的模型MotionLM具有以下几个优点:首先,它不需要使用锚点或显式潜变量来优化学习多模态分布。相反,我们利用标准的语言建模目标,最大化序列令牌的平均对数概率。其次,我们的方法避免了事后交互启发法,其中个体代理轨迹生成是在交互评分之后进行的。相反,MotionLM在单个自回归解码过程中生成了交互式代理未来的联合分布。此外,模型的顺序分解可以实现时间上的因果条件推断。我们提出的方法在Waymo Open Motion Dataset上取得了新的最先进性能,排名第一于交互式挑战排行榜

主要贡献:

在这篇文章中,我们将多智能体运动预测作为一项语言建模任务进行讨论。我们引入了时间因果解码器,对经过因果语言建模损失训练的离散运动令牌进行解码

本文将结合模型中的采样和简单的 rollout 聚合方案,以提高联合轨迹的加权模式识别能力。我们通过在 Waymo Open Motion Dataset 交互预测挑战中的实验,证明了这一新的方法在排名联合 mAP 指标上提高了6%,达到了最先进的性能水平

本文对本文的方法进行了广泛的消融实验,并对它的时间因果条件预测进行了分析,这在很大程度上是目前的联合预测模型所不支持的。

网络设计:

本文的目标是以一种通用的方式对多智能体交互上的分布建模,这种分布可以应用于不同的下游任务,包括最低限度的、联合的和条件预测。为了实现这一目标,需要一个有表现力的生成框架,能够捕捉到驾驶场景中的多种形态。此外,本文在这里考虑保存时间依赖性;即,在本文的模型中,推理遵循一个有向无环图,每个节点的父节点在时间上较早,子节点在时间上较晚,这使得条件预测更接近于因果干预,因为它消除了某些虚假的相关性,否则就会导致不服从时间因果关系。本文观察到,不保留时间依赖关系的联合模型可能在预测实际agent反应方面的能力有限,这是规划中的一个关键用途。为此,本文利用了未来解码器的自回归分解,其中代理的运动tokens有条件地依赖于所有先前采样的tokens,并且轨迹按顺序推出

MotionLM:多智能体运动预测的语言建模技术

图1。本文的模型自回归地为一组代理生成离散运动tokens序列,以产生一致的交互式轨迹预测。

MotionLM:多智能体运动预测的语言建模技术

请看图2,这是MotionLM的架构

本文首先将与每个建模代理相关的异构场景特征(左)编码为形状R、N、·、H的场景嵌入。其中,R为首次推出(rollouts)的数量,N为联合建模的代理数量,H为每次嵌入的维数。在推理过程中,为了并行采样,本文在批量维度上重复嵌入R次。接下来,一个轨迹解码器以一种时间因果的方式(中心)为多个代理推出(rolls out) T 个离散运动tokens。最后,通过使用非最大抑制初始化的k-means聚类的简单聚合,可以恢复 rollouts 典型模式(右图)。

MotionLM:多智能体运动预测的语言建模技术

图3。展示了三个WOMD场景的前两种预测联合推出(joint rollout)模式。

颜色梯度表示了从t = 0秒到t = 8秒的时间变化。联合模式由绿色过渡到蓝色,次联合模式由橙色过渡到紫色的概率最大。我们观察到了三种类型的交互:相邻车道中的智能体会根据变道时间给予变道智能体让行(左侧),行人会根据车辆的进度走在过往车辆后面(中间),转弯车辆要么会给过路的骑车人让路(最可能的模式),要么会在骑车人接近之前转弯(次要模式)(右侧)

MotionLM:多智能体运动预测的语言建模技术

请看图4。这张图展示了联合推出(左侧)、干预后因果贝叶斯网络(中间)和因果条件反射(右侧)的因果贝叶斯网络表示

实线表示时间上的因果相关性,而虚线表示因果信息流。没有时间依赖约束的模型将支持因果条件作用,但不支持时间因果条件作用,这在试图预测agent反应时可能是有问题的。

实验结果:

MotionLM:多智能体运动预测的语言建模技术

MotionLM:多智能体运动预测的语言建模技术

MotionLM:多智能体运动预测的语言建模技术

MotionLM:多智能体运动预测的语言建模技术

MotionLM:多智能体运动预测的语言建模技术

MotionLM:多智能体运动预测的语言建模技术

MotionLM:多智能体运动预测的语言建模技术

引用:

Seff, A., Cera, B., Chen, D., Ng, M., Zhou, A., Nayakanti, N., Refaat, K. S., & Sapp, B. (2023). MotionLM: Multi-Agent Motion Forecasting as Language Modeling. ArXiv. /abs/2309.16534

MotionLM:多智能体运动预测的语言建模技术

原文链接:https://mp.weixin.qq.com/s/MTai0rA8PeNFuj7UjCfd6A

以上是MotionLM:多智能体运动预测的语言建模技术的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

全球最强开源 MoE 模型来了,中文能力比肩 GPT-4,价格仅为 GPT-4-Turbo 的近百分之一 全球最强开源 MoE 模型来了,中文能力比肩 GPT-4,价格仅为 GPT-4-Turbo 的近百分之一 May 07, 2024 pm 04:13 PM

想象一下,一个人工智能模型,不仅拥有超越传统计算的能力,还能以更低的成本实现更高效的性能。这不是科幻,DeepSeek-V2[1],全球最强开源MoE模型来了。DeepSeek-V2是一个强大的专家混合(MoE)语言模型,具有训练经济、推理高效的特点。它由236B个参数组成,其中21B个参数用于激活每个标记。与DeepSeek67B相比,DeepSeek-V2性能更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,最大生成吞吐量提高到5.76倍。DeepSeek是一家探索通用人工智

AI颠覆数学研究!菲尔兹奖得主、华裔数学家领衔11篇顶刊论文|陶哲轩转赞 AI颠覆数学研究!菲尔兹奖得主、华裔数学家领衔11篇顶刊论文|陶哲轩转赞 Apr 09, 2024 am 11:52 AM

AI,的确正在改变数学。最近,一直十分关注这个议题的陶哲轩,转发了最近一期的《美国数学学会通报》(BulletinoftheAmericanMathematicalSociety)。围绕「机器会改变数学吗?」这个话题,众多数学家发表了自己的观点,全程火花四射,内容硬核,精彩纷呈。作者阵容强大,包括菲尔兹奖得主AkshayVenkatesh、华裔数学家郑乐隽、纽大计算机科学家ErnestDavis等多位业界知名学者。AI的世界已经发生了天翻地覆的变化,要知道,其中很多文章是在一年前提交的,而在这一

替代MLP的KAN,被开源项目扩展到卷积了 替代MLP的KAN,被开源项目扩展到卷积了 Jun 01, 2024 pm 10:03 PM

本月初,来自MIT等机构的研究者提出了一种非常有潜力的MLP替代方法——KAN。KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。KAN与MLP一样具有强大的数学基础,MLP基于通用逼近定理,而KAN基于Kolmogorov-Arnold表示定理。如下图所示,KAN在边上具

谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择 谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择 Apr 01, 2024 pm 07:46 PM

谷歌力推的JAX在最近的基准测试中性能已经超过Pytorch和TensorFlow,7项指标排名第一。而且测试并不是在JAX性能表现最好的TPU上完成的。虽然现在在开发者中,Pytorch依然比Tensorflow更受欢迎。但未来,也许有更多的大模型会基于JAX平台进行训练和运行。模型最近,Keras团队为三个后端(TensorFlow、JAX、PyTorch)与原生PyTorch实现以及搭配TensorFlow的Keras2进行了基准测试。首先,他们为生成式和非生成式人工智能任务选择了一组主流

你好,电动Atlas!波士顿动力机器人复活,180度诡异动作吓坏马斯克 你好,电动Atlas!波士顿动力机器人复活,180度诡异动作吓坏马斯克 Apr 18, 2024 pm 07:58 PM

波士顿动力Atlas,正式进入电动机器人时代!昨天,液压Atlas刚刚「含泪」退出历史舞台,今天波士顿动力就宣布:电动Atlas上岗。看来,在商用人形机器人领域,波士顿动力是下定决心要和特斯拉硬刚一把了。新视频放出后,短短十几小时内,就已经有一百多万观看。旧人离去,新角色登场,这是历史的必然。毫无疑问,今年是人形机器人的爆发年。网友锐评:机器人的进步,让今年看起来像人类的开幕式动作、自由度远超人类,但这真不是恐怖片?视频一开始,Atlas平静地躺在地上,看起来应该是仰面朝天。接下来,让人惊掉下巴

FisheyeDetNet:首个基于鱼眼相机的目标检测算法 FisheyeDetNet:首个基于鱼眼相机的目标检测算法 Apr 26, 2024 am 11:37 AM

目标检测在自动驾驶系统当中是一个比较成熟的问题,其中行人检测是最早得以部署算法之一。在多数论文当中已经进行了非常全面的研究。然而,利用鱼眼相机进行环视的距离感知相对来说研究较少。由于径向畸变大,标准的边界框表示在鱼眼相机当中很难实施。为了缓解上述描述,我们探索了扩展边界框、椭圆、通用多边形设计为极坐标/角度表示,并定义一个实例分割mIOU度量来分析这些表示。所提出的具有多边形形状的模型fisheyeDetNet优于其他模型,并同时在用于自动驾驶的Valeo鱼眼相机数据集上实现了49.5%的mAP

特斯拉机器人进厂打工,马斯克:手的自由度今年将达到22个! 特斯拉机器人进厂打工,马斯克:手的自由度今年将达到22个! May 06, 2024 pm 04:13 PM

特斯拉机器人Optimus最新视频出炉,已经可以在厂子里打工了。正常速度下,它分拣电池(特斯拉的4680电池)是这样的:官方还放出了20倍速下的样子——在小小的“工位”上,拣啊拣啊拣:这次放出的视频亮点之一在于Optimus在厂子里完成这项工作,是完全自主的,全程没有人为的干预。并且在Optimus的视角之下,它还可以把放歪了的电池重新捡起来放置,主打一个自动纠错:对于Optimus的手,英伟达科学家JimFan给出了高度的评价:Optimus的手是全球五指机器人里最灵巧的之一。它的手不仅有触觉

单卡跑Llama 70B快过双卡,微软硬生生把FP6搞到了A100里 | 开源 单卡跑Llama 70B快过双卡,微软硬生生把FP6搞到了A100里 | 开源 Apr 29, 2024 pm 04:55 PM

FP8和更低的浮点数量化精度,不再是H100的“专利”了!老黄想让大家用INT8/INT4,微软DeepSpeed团队在没有英伟达官方支持的条件下,硬生生在A100上跑起FP6。测试结果表明,新方法TC-FPx在A100上的FP6量化,速度接近甚至偶尔超过INT4,而且拥有比后者更高的精度。在此基础之上,还有端到端的大模型支持,目前已经开源并集成到了DeepSpeed等深度学习推理框架中。这一成果对大模型的加速效果也是立竿见影——在这种框架下用单卡跑Llama,吞吐量比双卡还要高2.65倍。一名

See all articles