GPT-4通过DeepMind的训练,提高了13.7%的准确率,实现了更好的归纳和演绎能力
当前,大型语言模型(LLM)在推理任务上展示了惊人的能力,尤其是在提供样例和中间步骤的情况下。然而,prompt 方法通常依赖于LLM中的隐含知识,当隐含知识存在错误或与任务不一致时,LLM可能会给出错误的答案
现在,来自谷歌、Mila 研究所等研究机构的研究者们联合探索了一种新的方法 - 让LLM学习推理规则,并提出了一种名为假设到理论(Hypotheses-to-Theories,HtT)的新框架。这种新方法不仅改进了多步推理,还具有可解释性和可迁移性等优势
论文地址:https://arxiv.org/abs/2310.07064
根据对数值推理和关系推理问题的实验结果显示,HtT方法对现有的提示方法进行了改进,准确率提高了11-27%。同时,所学到的规则也可以迁移到不同的模型或同一问题的不同形式中
方法简介
总的来说,HtT 框架包含两个阶段 —— 归纳阶段和演绎阶段,类似于传统机器学习中的训练和测试。
在归纳阶段,LLM 首先需要生成并验证一组训练样例的规则。本研究采用 CoT 来声明规则并推导答案,评估规则的出现频率和准确性,收集经常出现且导致正确答案的规则,形成规则库
有了良好的规则库,下一步该研究如何应用这些规则来解决问题。为此,在演绎阶段,该研究在 prompt 中添加规则库,并要求 LLM 从规则库中检索规则来进行演绎,将隐式推理转换为显式推理。
然而,研究发现,即使是非常强大的LLM(例如GPT-4),也很难在每一步都检索到正确的规则。因此,该研究开发了XML标记技巧,以增强LLM的上下文检索能力
实验结果
为了评估 HtT,该研究针对两个多步骤推理问题进行了基准测试。实验结果表明,HtT 改进了少样本 prompt 方法。作者还进行了广泛的消融研究,以提供对 HtT 更全面的了解。
他们在数值推理和关系推理问题上评估新方法。在数值推理中,他们观察到 GPT-4 的准确率提高了 21.0%。在关系推理中,GPT-4 的准确性提高了 13.7%,GPT-3.5 则获益更多,性能提高了一倍。性能增益主要来自于规则幻觉的减少。
具体来说,下表 1 显示了在算术的 base-16、base-11 和 base-9 数据集上的结果。在所有 base 系统中,0-shot CoT 在两个 LLM 中的性能都最差。
表 2 呈现了在 CLUTRR 上比较不同方法的结果。可以观察到,在 GPT3.5 和 GPT4 中,0-shot CoT 的性能最差。对于 few-shot 提示方法,CoT 和 LtM 的性能相似。在平均准确率方面,HtT 始终比两种模型的提示方法高出 11.1-27.2%。值得注意的是,GPT3.5 在检索 CLUTRR 规则方面并不差,而且比 GPT4 从 HtT 中获益更多,这可能是因为 CLUTRR 中的规则比算术中的规则少。
值得一提的是,使用 GPT4 的规则,GPT3.5 上的 CoT 性能提高了 27.2%,是 CoT 性能的两倍多,接近 GPT4 上的 CoT 性能。因此,作者认为 HtT 可以作为从强 LLM 到弱 LLM 的一种新的知识蒸馏形式。
表 3 显示,HtT 显着提高了 GPT-4(文本版)的性能。对于 GPT3.5 来说,这种改进并不显着,因为在处理文本输入时,它经常产生除规则幻觉以外的错误。
以上是GPT-4通过DeepMind的训练,提高了13.7%的准确率,实现了更好的归纳和演绎能力的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

5月30日,腾讯宣布旗下混元大模型全面升级,基于混元大模型的App“腾讯元宝”正式上线,苹果及安卓应用商店均可下载。相比此前测试阶段的混元小程序版本,面向工作效率场景,腾讯元宝提供了AI搜索、AI总结、AI写作等核心能力;面向日常生活场景,元宝的玩法也更加丰富,提供了多个特色AI应用,并新增了创建个人智能体等玩法。“腾讯做大模型不争一时之先。”腾讯云副总裁、腾讯混元大模型负责人刘煜宏表示:“过去的一年,我们持续推进腾讯混元大模型的能力爬坡,在丰富、海量的业务场景中打磨技术,同时洞察用户的真实需求

火山引擎总裁谭待企业要做好大模型落地,面临模型效果、推理成本、落地难度的三大关键挑战:既要有好的基础大模型做支撑,解决复杂难题,也要有低成本的推理服务让大模型被广泛应用,还要更多工具、平台和应用帮助企业做好场景落地。——谭待火山引擎总裁01.豆包大模型首次亮相大使用量打磨好模型模型效果是AI落地最关键的挑战。谭待指出,只有大的使用量,才能打磨出好模型。目前,豆包大模型日均处理1,200亿tokens文本、生成3,000万张图片。为助力企业做好大模型场景落地,字节跳动自主研发的豆包大模型将通过火山

在机器学习和数据科学领域,模型的可解释性一直是研究者和实践者关注的焦点。随着深度学习和集成方法等复杂模型的广泛应用,理解模型的决策过程变得尤为重要。可解释人工智能(ExplainableAI|XAI)通过提高模型的透明度,帮助建立对机器学习模型的信任和信心。提高模型的透明度可以通过多种复杂模型的广泛应用等方法来实现,以及用于解释模型的决策过程。这些方法包括特征重要性分析、模型预测区间估计、局部可解释性算法等。特征重要性分析可以通过评估模型对输入特征的影响程度来解释模型的决策过程。模型预测区间估计

C++中机器学习算法面临的常见挑战包括内存管理、多线程、性能优化和可维护性。解决方案包括使用智能指针、现代线程库、SIMD指令和第三方库,并遵循代码风格指南和使用自动化工具。实践案例展示了如何利用Eigen库实现线性回归算法,有效地管理内存和使用高性能矩阵操作。

一、背景简介首先来介绍一下云问科技的发展历程。云问科技公...2023年,正是大模型盛行的时期,很多企业认为已经大模型之后图谱的重要性大大降低了,之前研究的预置的信息化系统也都不重要了。不过随着RAG的推广、数据治理的盛行,我们发现更高效的数据治理和高质量的数据是提升私有化大模型效果的重要前提,因此越来越多的企业开始重视知识建设的相关内容。这也推动了知识的构建和加工开始向更高水平发展,其中有很多技巧和方法可以挖掘。可见一个新技术的出现,并不是将所有的旧技术打败,也有可能将新技术和旧技术相互融合后

6月13日消息,据字节旗下“火山引擎”公众号介绍,小米旗下人工智能助手“小爱同学”与火山引擎达成合作,双方基于豆包大模型实现更智能的AI交互体验。据悉,字节跳动打造的豆包大模型,每日能够高效处理数量多达1200亿个的文本tokens、生成3000万张内容。小米借助豆包大模型提升自身模型的学习与推理能力,打造出全新的“小爱同学”,不仅更加精准地把握用户需求,还以更快的响应速度和更全面的内容服务。例如,当用户询问复杂的科学概念时,&ldq

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

译者|李睿审校|重楼人工智能(AI)和机器学习(ML)模型如今变得越来越复杂,这些模型产生的输出是黑盒——无法向利益相关方解释。可解释性人工智能(XAI)致力于通过让利益相关方理解这些模型的工作方式来解决这一问题,确保他们理解这些模型实际上是如何做出决策的,并确保人工智能系统中的透明度、信任度和问责制来解决这个问题。本文探讨了各种可解释性人工智能(XAI)技术,以阐明它们的基本原理。可解释性人工智能至关重要的几个原因信任度和透明度:为了让人工智能系统被广泛接受和信任,用户需要了解决策是如何做出的
