让大模型看图比打字管用!NeurIPS 2023新研究提出多模态查询方法,准确率提升7.8%
大模型“识图”能力都这么强了,为啥还老找错东西?
例如,把长得不太像的蝙蝠和拍子搞混,又或是认不出一些数据集中的稀有鱼类……
这是因为,我们让大模型“找东西”时,往往输入的是文本。
如果描述有歧义或太偏门,像是“bat”(蝙蝠还是拍子?)或“魔鳉”(Cyprinodon diabolis),AI就会大为困惑。
这就导致用大模型做目标检测、尤其是开放世界(未知场景)目标检测任务时,效果往往没有想象中那么好。
现在,一篇被NeurIPS 2023收录的论文,终于解决了这个问题。
论文提出了一种基于多模态查询的目标检测方法MQ-Det,只需要给输入加上一个图片示例,就能让大模型找东西的准确率大幅提升。
在基准检测数据集LVIS上,无需下游任务模型微调,MQ-Det平均提升主流检测大模型GLIP精度约7.8%,在13个基准小样本下游任务上,平均提高了6.3%精度。
这究竟是怎么做到的?一起来看看。
以下内容转载自论文作者、知乎博主@沁园夏:
目录
- MQ-Det:多模态查询的开放世界目标检测大模型
- 1.1 从文本查询到多模态查询
- 1.2 MQ-Det 即插即用的多模态查询模型架构
- 1.3 MQ-Det高效训练策略
- 1.4 实验结果:Finetuning-free评估
- 1.5 实验结果:Few-shot评估
- 1.6 多模态查询目标检测的前景
MQ-Det:多模态查询的开放世界目标检测大模型
论文名称:Multi-modal Queried Object Detection in the Wild
论文链接:https://www.php.cn/link/9c6947bd95ae487c81d4e19d3ed8cd6f
代码地址:https://www.php.cn/link/2307ac1cfee5db3a5402aac9db25cc5d
1.1 从文本查询到多模态查询
一图胜千言:随着图文预训练的兴起,借助文本的开放语义,目标检测逐渐步入了开放世界感知的阶段。为此,许多检测大模型都遵循了文本查询的模式,即利用类别文本描述在目标图像中查询潜在目标。然而,这种方式往往会面临“广而不精”的问题。
例如,(1)图1中的细粒度物体(鱼种)检测,往往很难用有限的文本来描述各种细粒度的鱼种,(2)类别歧义(“bat”既可指蝙蝠又可指拍子)。
然而,以上的问题均可通过图像示例来解决,相比文本,图像能够提供目标物体更丰富的特征线索,但同时文本又具备强大的泛化性。
由此,如何能够有机地结合两种查询方式,成为了一个很自然的想法。
获取多模态查询能力的难点:如何得到这样一个具备多模态查询的模型,存在三个挑战:(1)直接用有限的图像示例进行微调很容易造成灾难性遗忘;(2)从头训练一个检测大模型会具备较好的泛化性但是消耗巨大,例如,单卡训练GLIP 需要利用3000万数据量训练480 天。
多模态查询目标检测:基于以上考虑,作者提出了一种简单有效的模型设计和训练策略——MQ-Det。
MQ-Det在已有冻结的文本查询检测大模型基础上插入少量门控感知模块(GCP)来接收视觉示例的输入,同时设计了视觉条件掩码语言预测训练策略高效地得到高性能多模态查询的检测器。
1.2 MQ-Det即插即用的多模态查询模型架构
△图1 MQ-Det方法架构图
门控感知模块
如图1所示,作者在已有冻结的文本查询检测大模型的文本编码器端逐层插入了门控感知模块(GCP),GCP的工作模式可以用下面公式简洁地表示:
对于第i个类别,输入视觉示例Vi,其首先和目标图像I进行交叉注意力(X-MHA)得到以增广其表示能力,而后每个类别文本ti会和对应类别的视觉示例
进行交叉注意力得到
,之后通过一个门控模块gate将原始文本ti和视觉增广后文本
融合,得到当前层的输出
。这样的简单设计遵循了三点原则:(1)类别可扩展性;(2)语义补全性;(3)抗遗忘性,具体讨论可见原文。
1.3 MQ-Det高效训练策略
基于冻结语言查询检测器的调制训练
由于目前文本查询的预训练检测大模型本身就具备较好的泛化性,论文作者认为,只需要在原先文本特征基础上用视觉细节进行轻微地调整即可。
在文章中也有具体的实验论证发现,打开原始预训练模型参数后进行微调很容易带来灾难性遗忘的问题,反而失去了开放世界检测的能力。
由此,MQ-Det在冻结文本查询的预训练检测器基础上,仅调制训练插入的GCP模块,就可以高效地将视觉信息插入到现有文本查询的检测器中。
在论文中,作者分别将MQ-Det的结构设计和训练技术应用于目前的SOTA模型GLIP和GroundingDINO ,来验证方法的通用性。
以视觉为条件的掩码语言预测训练策略
作者还提出了一种视觉为条件的掩码语言预测训练策略,来解决冻结预训练模型带来的学习惰性的问题。
所谓学习惰性,即指检测器在训练过程中倾向于保持原始文本查询的特征,从而忽视新加入的视觉查询特征。
为此,MQ-Det在训练时随机地用[MASK] token来替代文本token,迫使模型向视觉查询特征侧学习,即:
这个策略虽然简单,但是却十分有效,从实验结果来看这个策略带来了显著的性能提升。
1.4 实验结果:Finetuning-free评估
Finetuning-free:相比传统零样本(zero-shot)评估仅利用类别文本进行测试,MQ-Det提出了一种更贴近实际的评估策略:finetuning-free。其定义为:在不进行任何下游微调的条件下,用户可以利用类别文本、图像示例、或者两者结合来进行目标检测。
在finetuning-free的设定下,MQ-Det对每个类别选用了5个视觉示例,同时结合类别文本进行目标检测,而现有的其他模型不支持视觉查询,只能用纯文本描述进行目标检测。下表展示了在LVIS MiniVal和LVIS v1.0上的检测结果。可以发现,多模态查询的引入大幅度提升了开放世界目标检测能力。
△表1 各个检测模型在LVIS基准数据集下的finetuning-free表现
从表1可以看到,MQ-GLIP-L在GLIP-L基础上提升了超过7%AP,效果十分显着!
1.5 实验结果:Few-shot评估
△表2 各个模型在35个检测任务ODinW-35以及其13个子集ODinW-13中的表现
作者还进一步在下游35个检测任务ODinW-35中进行了全面的实验。由表2可以看到,MQ-Det除了强大的finetuning-free表现,还具备良好的小样本检测能力,进一步印证了多模态查询的潜力。图2也展示了MQ-Det对于GLIP的显着提升。
△图2 数据利用效率对比;横轴:训练样本数量,纵轴:OdinW-13上的平均AP
1.6 多模态查询目标检测的前景
目标检测作为一个以实际应用为基础的研究领域,非常注重算法的落地。
尽管以往的纯文本查询目标检测模型展现出了良好的泛化性,但是在实际的开放世界检测中文本很难涵盖细粒度的信息,而图像中丰富的信息粒度完美地补全了这一环。
至此我们能够发现,文本泛而不精,图像精而不泛,如果能够有效地结合两者,即多模态查询,将会推动开放世界目标检测进一步向前迈进。
MQ-Det在多模态查询上迈出了第一步尝试,其显着的性能提升也昭示着多模态查询目标检测的巨大潜力。
同时,文本描述和视觉示例的引入为用户提供了更多的选择,使得目标检测更加灵活和用户友好。
以上是让大模型看图比打字管用!NeurIPS 2023新研究提出多模态查询方法,准确率提升7.8%的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

想象一下,一个人工智能模型,不仅拥有超越传统计算的能力,还能以更低的成本实现更高效的性能。这不是科幻,DeepSeek-V2[1],全球最强开源MoE模型来了。DeepSeek-V2是一个强大的专家混合(MoE)语言模型,具有训练经济、推理高效的特点。它由236B个参数组成,其中21B个参数用于激活每个标记。与DeepSeek67B相比,DeepSeek-V2性能更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,最大生成吞吐量提高到5.76倍。DeepSeek是一家探索通用人工智

AI,的确正在改变数学。最近,一直十分关注这个议题的陶哲轩,转发了最近一期的《美国数学学会通报》(BulletinoftheAmericanMathematicalSociety)。围绕「机器会改变数学吗?」这个话题,众多数学家发表了自己的观点,全程火花四射,内容硬核,精彩纷呈。作者阵容强大,包括菲尔兹奖得主AkshayVenkatesh、华裔数学家郑乐隽、纽大计算机科学家ErnestDavis等多位业界知名学者。AI的世界已经发生了天翻地覆的变化,要知道,其中很多文章是在一年前提交的,而在这一

谷歌力推的JAX在最近的基准测试中性能已经超过Pytorch和TensorFlow,7项指标排名第一。而且测试并不是在JAX性能表现最好的TPU上完成的。虽然现在在开发者中,Pytorch依然比Tensorflow更受欢迎。但未来,也许有更多的大模型会基于JAX平台进行训练和运行。模型最近,Keras团队为三个后端(TensorFlow、JAX、PyTorch)与原生PyTorch实现以及搭配TensorFlow的Keras2进行了基准测试。首先,他们为生成式和非生成式人工智能任务选择了一组主流

波士顿动力Atlas,正式进入电动机器人时代!昨天,液压Atlas刚刚「含泪」退出历史舞台,今天波士顿动力就宣布:电动Atlas上岗。看来,在商用人形机器人领域,波士顿动力是下定决心要和特斯拉硬刚一把了。新视频放出后,短短十几小时内,就已经有一百多万观看。旧人离去,新角色登场,这是历史的必然。毫无疑问,今年是人形机器人的爆发年。网友锐评:机器人的进步,让今年看起来像人类的开幕式动作、自由度远超人类,但这真不是恐怖片?视频一开始,Atlas平静地躺在地上,看起来应该是仰面朝天。接下来,让人惊掉下巴

本月初,来自MIT等机构的研究者提出了一种非常有潜力的MLP替代方法——KAN。KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。KAN与MLP一样具有强大的数学基础,MLP基于通用逼近定理,而KAN基于Kolmogorov-Arnold表示定理。如下图所示,KAN在边上具

特斯拉机器人Optimus最新视频出炉,已经可以在厂子里打工了。正常速度下,它分拣电池(特斯拉的4680电池)是这样的:官方还放出了20倍速下的样子——在小小的“工位”上,拣啊拣啊拣:这次放出的视频亮点之一在于Optimus在厂子里完成这项工作,是完全自主的,全程没有人为的干预。并且在Optimus的视角之下,它还可以把放歪了的电池重新捡起来放置,主打一个自动纠错:对于Optimus的手,英伟达科学家JimFan给出了高度的评价:Optimus的手是全球五指机器人里最灵巧的之一。它的手不仅有触觉

目标检测在自动驾驶系统当中是一个比较成熟的问题,其中行人检测是最早得以部署算法之一。在多数论文当中已经进行了非常全面的研究。然而,利用鱼眼相机进行环视的距离感知相对来说研究较少。由于径向畸变大,标准的边界框表示在鱼眼相机当中很难实施。为了缓解上述描述,我们探索了扩展边界框、椭圆、通用多边形设计为极坐标/角度表示,并定义一个实例分割mIOU度量来分析这些表示。所提出的具有多边形形状的模型fisheyeDetNet优于其他模型,并同时在用于自动驾驶的Valeo鱼眼相机数据集上实现了49.5%的mAP

写在前面项目链接:https://nianticlabs.github.io/mickey/给定两张图片,可以通过建立图片之间的对应关系来估计它们之间的相机姿态。通常,这些对应关系是二维到二维的,而我们估计的姿态在尺度上是不确定的。一些应用,例如随时随地实现即时增强现实,需要尺度度量的姿态估计,因此它们依赖于外部的深度估计器来恢复尺度。本文提出了MicKey,这是一个关键点匹配流程,能够够预测三维相机空间中的度量对应关系。通过学习跨图像的三维坐标匹配,我们能够在没有深度测试的情况下推断出度量相对
