边缘人工智能在实时数据分析和决策中的作用
了解边缘人工智能
边缘人工智能是指将人工智能算法和模型部署在传感器、摄像头、物联网设备等边缘设备上,而不是依赖集中式云服务器。这种方法使计算更接近数据源,允许更快的处理和即时洞察,对实时决策特别有价值。
低延迟:边缘人工智能降低了延迟,因为数据不需要传输到遥远的云数据中心进行分析。这对于自动驾驶汽车和工业自动化等瞬间决策至关重要的应用来说至关重要。
隐私和安全性:敏感数据可以在边缘本地处理,通过最大限度地减少传输过程中的数据暴露,增强隐私和安全性。
带宽效率:边缘人工智能减少了网络带宽的压力,特别是在偏远地区或连接有限的地区。
成本效益:通过在边缘执行数据分析,组织可以降低与数据传输和处理相关的云计算成本。
边缘人工智能在实时数据分析中的关键应用
制造业:边缘人工智能通过持续分析来自传感器和机器的数据,实现制造业的预测性维护。这可以防止昂贵的设备故障,并最大限度地减少停机时间。
医疗保健:在医疗保健领域,边缘人工智能可以处理来自可穿戴设备的患者数据,提供实时健康监测和警报。其还有助于医学图像分析,提高诊断准确性。
零售业:在零售业,边缘人工智能通过跟踪产品和优化补货来支持库存管理。其还通过个性化推荐增强了客户体验。
自动驾驶汽车:边缘人工智能通过处理来自摄像头、激光雷达和其他传感器的数据,在瞬间做出驾驶决策,在自动驾驶汽车中发挥着核心作用。
智慧城市:边缘人工智能用于智慧城市应用,如交通管理、公共安全和废物管理,以分析来自物联网传感器和监控摄像头的数据。
挑战与考虑
虽然边缘人工智能提供了许多好处,但也带来了挑战,包括硬件限制、模型尺寸限制以及需要持续更新和维护。组织必须仔细规划其边缘人工智能实施,以有效地应对这些挑战。
总结
将边缘人工智能集成到实时数据分析和决策过程中,正在全面改变行业。通过实现低延迟处理、增强隐私和安全性以及降低成本,边缘人工智能使组织能够做出更快、更明智的决策。随着技术的不断进步,我们可以期待边缘人工智能的更多创新应用,进一步巩固其在未来数据驱动领域的关键作用。拥抱边缘人工智能不仅仅是一种选择,这是企业在当今充满活力的世界中保持竞争力和响应能力的战略要求。
以上是边缘人工智能在实时数据分析和决策中的作用的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

本站8月1日消息,SK海力士今天(8月1日)发布博文,宣布将出席8月6日至8日,在美国加利福尼亚州圣克拉拉举行的全球半导体存储器峰会FMS2024,展示诸多新一代产品。未来存储器和存储峰会(FutureMemoryandStorage)简介前身是主要面向NAND供应商的闪存峰会(FlashMemorySummit),在人工智能技术日益受到关注的背景下,今年重新命名为未来存储器和存储峰会(FutureMemoryandStorage),以邀请DRAM和存储供应商等更多参与者。新产品SK海力士去年在
