苹果'套娃”式扩散模型,训练步数减少七成!
苹果的一项最新研究,大幅提高了扩散模型在高分辨率图像上性能。
利用这种方法,同样分辨率的图像,训练步数减少了超过七成。
在1024×1024的分辨率下,图片画质直接拉满,细节都清晰可见。
苹果把这项成果命名为MDM,DM就是扩散模型(Diffusion Model)的缩写,而第一个M则代表了套娃(Matryoshka)。
就像真的套娃一样,MDM在高分辨率过程中嵌套了低分辨率过程,而且是多层嵌套。
高低分辨率扩散过程同时进行,极大降低了传统扩散模型在高分辨率过程中的资源消耗。
对于256×256分辨率的图像,在批大小(batch size)为1024的环境下,传统扩散模型需要训练150万步,而MDM仅需39万,减少了超七成。
另外,MDM采用了端到端训练,不依赖特定数据集和预训练模型,在提速的同时依然保证了生成质量,而且使用灵活。
不仅可以画出高分辨率的图像,还能合成16×256²的视频。
有网友评论到,苹果终于把文本连接到图像中了。
那么,MDM的“套娃”技术,具体是怎么做的呢?
整体与渐进相结合
在开始训练之前,需要将数据进行预处理,高分辨率的图像会用一定算法重新采样,得到不同分辨率的版本。
然后就是利用这些不同分辨率的数据进行联合UNet建模,小UNet处理低分辨率,并嵌套进处理高分辨率的大UNet。
通过跨分辨率的连接,不同大小的UNet之间可以共用特征和参数。
MDM的训练则是一个循序渐进的过程。
虽然建模是联合进行的,但训练过程并不会一开始就针对高分辨率进行,而是从低分辨率开始逐步扩大。
这样做可以避免庞大的运算量,还可以让低分辨率UNet的预训练可以加速高分辨率训练过程。
训练过程中会逐步将更高分辨率的训练数据加入总体过程中,让模型适应渐进增长的分辨率,平滑过渡到最终的高分辨率过程。
不过从整体上看,在高分辨率过程逐步加入之后,MDM的训练依旧是端到端的联合过程。
在不同分辨率的联合训练当中,多个分辨率上的损失函数一起参与参数更新,避免了多阶段训练带来的误差累积。
每个分辨率都有对应的数据项的重建损失,不同分辨率的损失被加权合并,其中为保证生成质量,低分辨率损失权重较大。
在推理阶段,MDM采用的同样是并行与渐进相结合的策略。
此外,MDM利还采用了预训练的图像分类模型(CFG)来引导生成样本向更合理的方向优化,并为低分辨率的样本添加噪声,使其更贴近高分辨率样本的分布。
那么,MDM的效果究竟如何呢?
更少参数匹敌SOTA
图像方面,在ImageNet和CC12M数据集上,MDM的FID(数值越低效果越好)和CLIP表现都显著优于普通扩散模型。
其中FID用于评价图像本身的质量,CLIP则说明了图像和文本指令之间的匹配程度。
和DALL E、IMAGEN等SOTA模型相比,MDM的表现也很接近,但MDM的训练参数远少于这些模型。
不仅是优于普通扩散模型,MDM的表现也超过了其他级联扩散模型。
消融实验结果表明,低分辨率训练的步数越多,MDM效果增强就越明显;另一方面,嵌套层级越多,取得相同的CLIP得分需要的训练步数就越少。
而关于CFG参数的选择,则是一个多次测试后再FID和CLIP之间权衡的结果(CLIP得分高相对于CFG强度增大)。
以上是苹果'套娃”式扩散模型,训练步数减少七成!的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

0.这篇文章干了啥?提出了DepthFM:一个多功能且快速的最先进的生成式单目深度估计模型。除了传统的深度估计任务外,DepthFM还展示了在深度修复等下游任务中的最先进能力。DepthFM效率高,可以在少数推理步骤内合成深度图。下面一起来阅读一下这项工作~1.论文信息标题:DepthFM:FastMonocularDepthEstimationwithFlowMatching作者:MingGui,JohannesS.Fischer,UlrichPrestel,PingchuanMa,Dmytr

想象一下,一个人工智能模型,不仅拥有超越传统计算的能力,还能以更低的成本实现更高效的性能。这不是科幻,DeepSeek-V2[1],全球最强开源MoE模型来了。DeepSeek-V2是一个强大的专家混合(MoE)语言模型,具有训练经济、推理高效的特点。它由236B个参数组成,其中21B个参数用于激活每个标记。与DeepSeek67B相比,DeepSeek-V2性能更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,最大生成吞吐量提高到5.76倍。DeepSeek是一家探索通用人工智

AI,的确正在改变数学。最近,一直十分关注这个议题的陶哲轩,转发了最近一期的《美国数学学会通报》(BulletinoftheAmericanMathematicalSociety)。围绕「机器会改变数学吗?」这个话题,众多数学家发表了自己的观点,全程火花四射,内容硬核,精彩纷呈。作者阵容强大,包括菲尔兹奖得主AkshayVenkatesh、华裔数学家郑乐隽、纽大计算机科学家ErnestDavis等多位业界知名学者。AI的世界已经发生了天翻地覆的变化,要知道,其中很多文章是在一年前提交的,而在这一

波士顿动力Atlas,正式进入电动机器人时代!昨天,液压Atlas刚刚「含泪」退出历史舞台,今天波士顿动力就宣布:电动Atlas上岗。看来,在商用人形机器人领域,波士顿动力是下定决心要和特斯拉硬刚一把了。新视频放出后,短短十几小时内,就已经有一百多万观看。旧人离去,新角色登场,这是历史的必然。毫无疑问,今年是人形机器人的爆发年。网友锐评:机器人的进步,让今年看起来像人类的开幕式动作、自由度远超人类,但这真不是恐怖片?视频一开始,Atlas平静地躺在地上,看起来应该是仰面朝天。接下来,让人惊掉下巴

本月初,来自MIT等机构的研究者提出了一种非常有潜力的MLP替代方法——KAN。KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。KAN与MLP一样具有强大的数学基础,MLP基于通用逼近定理,而KAN基于Kolmogorov-Arnold表示定理。如下图所示,KAN在边上具

特斯拉机器人Optimus最新视频出炉,已经可以在厂子里打工了。正常速度下,它分拣电池(特斯拉的4680电池)是这样的:官方还放出了20倍速下的样子——在小小的“工位”上,拣啊拣啊拣:这次放出的视频亮点之一在于Optimus在厂子里完成这项工作,是完全自主的,全程没有人为的干预。并且在Optimus的视角之下,它还可以把放歪了的电池重新捡起来放置,主打一个自动纠错:对于Optimus的手,英伟达科学家JimFan给出了高度的评价:Optimus的手是全球五指机器人里最灵巧的之一。它的手不仅有触觉

写在前面项目链接:https://nianticlabs.github.io/mickey/给定两张图片,可以通过建立图片之间的对应关系来估计它们之间的相机姿态。通常,这些对应关系是二维到二维的,而我们估计的姿态在尺度上是不确定的。一些应用,例如随时随地实现即时增强现实,需要尺度度量的姿态估计,因此它们依赖于外部的深度估计器来恢复尺度。本文提出了MicKey,这是一个关键点匹配流程,能够够预测三维相机空间中的度量对应关系。通过学习跨图像的三维坐标匹配,我们能够在没有深度测试的情况下推断出度量相对

什么?疯狂动物城被国产AI搬进现实了?与视频一同曝光的,是一款名为「可灵」全新国产视频生成大模型。Sora利用了相似的技术路线,结合多项自研技术创新,生产的视频不仅运动幅度大且合理,还能模拟物理世界特性,具备强大的概念组合能力和想象力。数据上看,可灵支持生成长达2分钟的30fps的超长视频,分辨率高达1080p,且支持多种宽高比。另外再划个重点,可灵不是实验室放出的Demo或者视频结果演示,而是短视频领域头部玩家快手推出的产品级应用。而且主打一个务实,不开空头支票、发布即上线,可灵大模型已在快影
