目录
脑图谱
数学和物理
想得更大
关键技术的复杂性
首页 科技周边 人工智能 谷歌科学家 Nature 评论:人工智能如何更好地理解大脑

谷歌科学家 Nature 评论:人工智能如何更好地理解大脑

Nov 10, 2023 am 08:21 AM
理论

谷歌科学家 Nature 评论:人工智能如何更好地理解大脑

编译 | 绿萝

2023 年 11 月 7 日,Google Research 高级研究科学家,Google 团队连接组学负责人 Viren Jain,在《Nature》发表了题为《人工智能如何更好地理解大脑》(How AI could lead to a better understanding of the brain)的评论文章。

谷歌科学家 Nature 评论:人工智能如何更好地理解大脑

论文链接:https://www.nature.com/articles/d41586-023-03426-3

计算机可以编程来模拟大脑吗?这是数学家、理论家和实验学家长期以来一直在问的一个问题——无论是出于创造人工智能 (AI) 的愿望,还是因为只有当数学或计算机能够重现其行为时,才能理解像大脑这样的复杂系统。为了试图回答这个问题,研究人员自 20 世纪 40 年代以来一直在开发大脑神经网络的简化模型。事实上,当今机器学习的爆炸式增长可以追溯到受生物系统启发的早期工作。

然而,这些努力的成果现在使研究人员能够提出一个稍微不同的问题:机器学习是否可以用来构建模拟大脑活动的计算模型?

这些发展的核心是越来越多的大脑数据。从 20 世纪 70 年代开始,神经科学家一直在制作连接组,即神经元连接和形态图,捕捉大脑在特定时刻的静态表示,之后,这种研究更加深入。除了这些进步之外,研究人员进行功能记录的能力也得到了提高,这种记录可以以单个细胞的分辨率测量神经活动随时间的变化。与此同时,转录组学领域使研究人员能够测量组织样本中的基因活性,甚至绘制出该活动发生的时间和地点。

到目前为止,很少有人尝试连接这些不同的数据源或从同一样本的整个大脑中同时收集它们。但随着数据集的细节水平、大小和数量的增加,特别是对于相对简单的模型生物的大脑,机器学习系统正在使一种新的大脑建模方法变得可行。这涉及在连接组和其他数据上训练人工智能程序,以重现您期望在生物系统中发现的神经活动。

计算神经科学家和其他人需要解决一些挑战才能开始使用机器学习来构建整个大脑的模拟。但是,将传统大脑建模技术的信息与经过不同数据集训练的机器学习系统相结合的混合方法可以使整个工作变得更加严格和信息更丰富。

脑图谱

绘制大脑图谱的探索始于近半个世纪前,人们在秀丽隐杆线虫身上进行了 15 年的艰苦研究。在过去的二十年中,自动组织切片和成像的发展使研究人员更容易获得解剖数据,而计算和自动图像分析的进步也改变了这些数据集的分析。

现在已经为线虫、幼虫和成虫果蝇的整个大脑以及小鼠和人类大脑的一小部分(分别为千分之一和百万分之一) 生成了连接组。

迄今为止制作的解剖图存在重大漏洞。成像方法尚无法与化学突触连接一起大规模绘制电连接图。研究人员主要关注神经元,尽管为神经元提供支持的非神经元胶质细胞似乎在神经系统的信息流中发挥着至关重要的作用。关于被绘制的神经元和其他细胞中表达的基因以及存在的蛋白质,仍然有很多未知之处。

谷歌科学家 Nature 评论:人工智能如何更好地理解大脑

尽管如此,此类地图已经产生了一些见解。例如,在黑腹果蝇中,连接组学使研究人员能够确定负责攻击性等行为的神经回路背后的机制。大脑图谱还揭示了果蝇如何在负责知道自己在哪里以及如何从一个地方到达另一个地方的电路中计算信息。在斑马鱼 (Danio rerio) 幼虫中,连接组学帮助揭示了气味分类、眼球位置和运动的控制以及导航背后的突触回路的工作原理。

最终可能产生整个小鼠大脑连接组的努力正在进行中——尽管使用目前的方法,这可能需要十年或更长时间。小鼠大脑几乎是黑腹果蝇大脑的 1,000 倍,后者由大约 150,000 个神经元组成。

除了连接组学方面的所有这些进展之外,研究人员还利用单细胞和空间转录组学以不断提高的准确性和特异性捕获基因表达模式。各种技术还允许研究人员一次记录脊椎动物整个大脑的神经活动几个小时。就斑马鱼幼虫大脑而言,这意味着要对近 100,000 个神经元进行记录。这些技术包括具有荧光特性的蛋白质,这些蛋白质会随着电压或钙水平的变化而变化,以及能够以单细胞分辨率对活体大脑进行 3D 成像的显微镜技术。(以这种方式进行的神经活动记录提供的图像不如电生理学记录准确,但比功能性磁共振成像等非侵入性方法要好得多。)

数学和物理

在尝试模拟大脑活动模式时,科学家主要使用基于物理的方法。这需要使用真实神经元或真实神经系统部分的行为的数学描述来生成神经系统或神经系统部分的模拟。它还需要对尚未通过观察验证的电路方面(例如网络连接性)做出明智的猜测。

在某些情况下,猜测是广泛的(参见「神秘模型」) 但在其他方面,单细胞和单个突触分辨率的解剖图帮助研究人员反驳和产生假设。

神秘模型

由于缺乏数据,很难评估某些神经网络模型是否捕捉到了真实系统中发生的情况。

备受争议的欧洲人脑计划于 9 月结束,其最初目标是通过计算模拟整个人脑。尽管该目标被放弃,但该项目确实基于有限的生物测量和各种合成数据生成程序,对啮齿动物和人类大脑的部分(包括啮齿动物海马模型中的数万个神经元)进行了模拟。

这种方法的一个主要问题是,在缺乏详细的解剖或功能图的情况下,很难评估最终的模拟在多大程度上准确地捕捉了生物系统中发生的情况。

大约七十年来,神经科学家一直在完善对黑腹果蝇能够计算运动的电路的理论描述。自 2013 年完成以来,运动检测电路连接组以及随后的更大的飞行连接组已经提供了详细的电路图,该图支持了有关该电路如何工作的一些假设。

然而,从真实神经网络收集的数据也凸显了解剖驱动方法的局限性。

例如,20 世纪 90 年代完成的神经回路模型包含对大约 30 个神经元的连接性和生理学的详细分析,这些神经元构成螃蟹(Cancer borealis)口胃神经节(控制动物胃运动的结构)。通过测量神经元在各种情况下的活动,研究人员发现,即使对于相对较小的神经元集合,看似微妙的变化,例如引入神经调节剂(一种改变神经元和突触特性的物质),也会完全改变电路的行为。这表明,即使使用连接组和其他丰富的数据集来指导和约束有关神经回路的假设,今天的数据可能还不够详细,建模者无法捕获生物系统中正在发生的情况。

这是机器学习可以提供前进方向的领域。

在连接组和其他数据的指导下优化数千甚至数十亿个参数,机器学习模型可以被训练以产生与真实神经网络行为一致的神经网络行为——使用细胞分辨率功能记录进行测量。

这种机器学习模型可以结合来自传统大脑建模技术的信息,例如霍奇金-赫胥黎模型(Hodgkin-Huxley model),该模型描述了神经元中的动作电位(跨膜电压的变化)如何启动和传播,以及使用优化的参数 连接图、功能活动记录或为整个大脑获得的其他数据集。或者,机器学习模型可以包含「黑匣子」架构,其中几乎不包含明确指定的生物学知识,但包含数十亿或数千亿参数,所有参数均经过经验优化。

例如,研究人员可以通过将系统神经活动的预测与实际生物系统的记录进行比较来评估此类模型。至关重要的是,当机器学习程序获得未经训练的数据时,他们将评估模型的预测如何进行比较——作为评估机器学习系统的标准做法。

谷歌科学家 Nature 评论:人工智能如何更好地理解大脑

小鼠大脑中神经元的轴突投射。(来源:Adam Glaser、Jayaram Chandrashekar、Karel Svoboda、艾伦神经动力学研究所)

这种方法将使包含数千个或更多神经元的大脑建模更加严格。例如,研究人员将能够评估更容易计算的更简单的模型是否比提供更详细的生物物理信息的更复杂的模型能更好地模拟神经网络,反之亦然。

机器学习已经以这种方式被用来提高对其他极其复杂的系统的理解。例如,自 20 世纪 50 年代以来,天气预测系统通常依赖于精心构建的气象现象数学模型,而现代系统则是数百名研究人员对此类模型进行迭代完善的结果。然而,在过去五年左右的时间里,研究人员已经开发了几种利用机器学习的天气预测系统。例如,这些包含与压力梯度如何驱动风速变化以及风速如何使水分穿过大气等相关的假设较少。相反,通过机器学习优化数百万个参数,以生成与过去天气模式数据库一致的模拟天气行为。

这种做事方式确实带来了一些挑战。即使模型做出了准确的预测,也很难解释它是如何做到的。此外,模型通常无法对未包含在其训练数据中的场景进行预测。经过训练来预测未来几天的天气模型很难推断出未来几周或几个月的预测。但在某些情况下——对于未来几个小时的降雨预测——机器学习方法已经优于传统方法。机器学习模型也具有实际优势。它们使用更简单的底层代码,专业气象知识较少的科学家也可以使用它们。

一方面,对于大脑建模,这种方法可以帮助填补当前数据集中的一些空白,并减少对单个生物成分(例如单个神经元)进行更详细测量的需要。另一方面,随着更全面的数据集的出现,将数据合并到模型中将变得很简单。

想得更大

为了实现这一想法,需要解决一些挑战。

机器学习程序的好坏取决于用于训练和评估它们的数据。因此,神经科学家应该致力于从样本的整个大脑中获取数据集——甚至从整个身体中获取数据集,如果这变得更加可行的话。尽管从大脑的某些部分收集数据比较容易,但如果底层数据中不存在系统的许多部分,那么使用机器学习对高度互连的系统(例如神经网络)进行建模就不太可能生成有用的信息。

研究人员还应该努力从同一样本的整个大脑中获得神经连接和功能记录的解剖图(也许将来还可以获得基因表达图)。目前,任何一个群体都倾向于只专注于获得其中之一,而不是同时获得两者。

由于只有 302 个神经元,线虫的神经系统可能具有足够的硬连线,使研究人员能够假设从一个样本获得的连接图对于任何其他样本都是相同的——尽管一些研究表明并非如此。但对于较大的神经系统,例如黑腹果蝇和斑马鱼幼虫的神经系统,样本之间的连接组变异非常显著,因此应该根据从同一样本获取的结构和功能数据来训练大脑模型。

目前,这只能在两种常见的模式生物中实现。线虫和斑马鱼幼虫的身体是透明的,这意味着研究人员可以对生物体的整个大脑进行功能记录,并精确定位单个神经元的活动。在进行此类记录后,可以立即杀死动物,将其嵌入树脂中并切片,并对神经连接进行解剖测量。然而,在未来,研究人员可以扩大可以进行此类组合数据采集的生物体范围,例如,通过开发新的非侵入性方法(可能使用超声波)以高分辨率记录神经活动。

在同一样本中获得此类多模式数据集需要研究人员之间的广泛合作、对大团队科学的投资以及增加资助机构对更全面的努力的支持。但这种方法是有先例的,例如美国情报高级研究计划活动的 MICrONS 项目,该项目在 2016 年至 2021 年间获得了 1 立方毫米小鼠大脑的功能和解剖数据。

谷歌科学家 Nature 评论:人工智能如何更好地理解大脑

除了获取这些数据之外,神经科学家还需要就关键建模目标和衡量进展的定量指标达成一致。模型的目标应该是根据过去的状态还是整个大脑来预测单个神经元的行为?单个神经元的活动应该是关键指标,还是应该是数十万个活跃神经元的百分比?同样,什么构成了生物系统中神经活动的准确再现?正式的、商定的基准对于比较建模方法和跟踪一段时间内的进展至关重要。

最后,为了向包括计算神经科学家和机器学习专家在内的不同社区提出大脑建模挑战,研究人员需要向更广泛的科学界阐明哪些建模任务是最优先的,以及应该使用哪些指标来评估模型的性能。WeatherBench 是一个提供评估和比较天气预报模型框架的在线平台,它提供了一个有用的模板。

关键技术的复杂性

有些人会质疑——这是正确的——大脑建模的机器学习方法在科学上是否有用。尝试理解大脑如何工作的问题是否可以简单地换成尝试理解大型人工网络如何工作的问题?

然而,在涉及确定大脑如何处理和编码感觉刺激(例如视觉和气味)的神经科学分支中使用类似的方法是令人鼓舞的。研究人员越来越多地使用经典建模的神经网络,其中一些生物细节被指定,并与机器学习系统相结合。后者接受大量视觉或音频数据集的训练,以重现神经系统的视觉或听觉能力,例如图像识别。由此产生的网络与生物网络表现出惊人的相似性,但比真正的神经网络更容易分析和询问。

目前,或许只需询问当前大脑图谱和其他工作的数据是否可以训练机器学习模型来重现与生物系统中所见相对应的神经活动。在这里,即使失败也会很有趣——这表明绘图研究必须更加深入。

以上是谷歌科学家 Nature 评论:人工智能如何更好地理解大脑的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

突破传统缺陷检测的界限,\'Defect Spectrum\'首次实现超高精度丰富语义的工业缺陷检测。 突破传统缺陷检测的界限,\'Defect Spectrum\'首次实现超高精度丰富语义的工业缺陷检测。 Jul 26, 2024 pm 05:38 PM

在现代制造业中,精准的缺陷检测不仅是保证产品质量的关键,更是提升生产效率的核心。然而,现有的缺陷检测数据集常常缺乏实际应用所需的精确度和语义丰富性,导致模型无法识别具体的缺陷类别或位置。为了解决这一难题,由香港科技大学广州和思谋科技组成的顶尖研究团队,创新性地开发出了“DefectSpectrum”数据集,为工业缺陷提供了详尽、语义丰富的大规模标注。如表一所示,相比其他工业数据集,“DefectSpectrum”数据集提供了最多的缺陷标注(5438张缺陷样本),最细致的缺陷分类(125种缺陷类别

英伟达对话模型ChatQA进化到2.0版本,上下文长度提到128K 英伟达对话模型ChatQA进化到2.0版本,上下文长度提到128K Jul 26, 2024 am 08:40 AM

开放LLM社区正是百花齐放、竞相争鸣的时代,你能看到Llama-3-70B-Instruct、QWen2-72B-Instruct、Nemotron-4-340B-Instruct、Mixtral-8x22BInstruct-v0.1等许多表现优良的模型。但是,相比于以GPT-4-Turbo为代表的专有大模型,开放模型在很多领域依然还有明显差距。在通用模型之外,也有一些专精关键领域的开放模型已被开发出来,比如用于编程和数学的DeepSeek-Coder-V2、用于视觉-语言任务的InternVL

谷歌AI拿下IMO奥数银牌,数学推理模型AlphaProof面世,强化学习 is so back 谷歌AI拿下IMO奥数银牌,数学推理模型AlphaProof面世,强化学习 is so back Jul 26, 2024 pm 02:40 PM

对于AI来说,奥数不再是问题了。本周四,谷歌DeepMind的人工智能完成了一项壮举:用AI做出了今年国际数学奥林匹克竞赛IMO的真题,并且距拿金牌仅一步之遥。上周刚刚结束的IMO竞赛共有六道赛题,涉及代数、组合学、几何和数论。谷歌提出的混合AI系统做对了四道,获得28分,达到了银牌水平。本月初,UCLA终身教授陶哲轩刚刚宣传了百万美元奖金的AI数学奥林匹克竞赛(AIMO进步奖),没想到7月还没过,AI的做题水平就进步到了这种水平。IMO上同步做题,做对了最难题IMO是历史最悠久、规模最大、最负

数百万晶体数据训练,解决晶体学相位问题,深度学习方法PhAI登Science 数百万晶体数据训练,解决晶体学相位问题,深度学习方法PhAI登Science Aug 08, 2024 pm 09:22 PM

编辑|KX时至今日,晶体学所测定的结构细节和精度,从简单的金属到大型膜蛋白,是任何其他方法都无法比拟的。然而,最大的挑战——所谓的相位问题,仍然是从实验确定的振幅中检索相位信息。丹麦哥本哈根大学研究人员,开发了一种解决晶体相问题的深度学习方法PhAI,利用数百万人工晶体结构及其相应的合成衍射数据训练的深度学习神经网络,可以生成准确的电子密度图。研究表明,这种基于深度学习的从头算结构解决方案方法,可以以仅2埃的分辨率解决相位问题,该分辨率仅相当于原子分辨率可用数据的10%到20%,而传统的从头算方

Nature观点,人工智能在医学中的测试一片混乱,应该怎么做? Nature观点,人工智能在医学中的测试一片混乱,应该怎么做? Aug 22, 2024 pm 04:37 PM

编辑|ScienceAI基于有限的临床数据,数百种医疗算法已被批准。科学家们正在讨论由谁来测试这些工具,以及如何最好地进行测试。DevinSingh在急诊室目睹了一名儿科患者因长时间等待救治而心脏骤停,这促使他探索AI在缩短等待时间中的应用。Singh利用了SickKids急诊室的分诊数据,与同事们建立了一系列AI模型,用于提供潜在诊断和推荐测试。一项研究表明,这些模型可以加快22.3%的就诊速度,将每位需要进行医学检查的患者的结果处理速度加快近3小时。然而,人工智能算法在研究中的成功只是验证此

为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 Jul 25, 2024 am 06:42 AM

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

自动识别最佳分子,降低合成成本,MIT开发分子设计决策算法框架 自动识别最佳分子,降低合成成本,MIT开发分子设计决策算法框架 Jun 22, 2024 am 06:43 AM

编辑|紫罗AI在简化药物发现方面的应用正在爆炸式增长。从数十亿种候选分子中筛选出可能具有开发新药所需特性的分子。需要考虑的变量太多了,从材料价格到出错的风险,即使科学家使用AI,权衡合成最佳候选分子的成本也不是一件容易的事。在此,MIT研究人员开发了一个定量决策算法框架SPARROW,来自动识别最佳分子候选物,从而最大限度地降低合成成本,同时最大限度地提高候选物具有所需特性的可能性。该算法还确定了合成这些分子所需的材料和实验步骤。SPARROW考虑了一次合成一批分子的成本,因为多个候选分子通常可

SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 Jul 17, 2024 pm 06:37 PM

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

See all articles