揭示医疗保健领域中AI和ML的潜力
在医疗保健领域,人工智能(AI)和机器学习(ML)逐渐为患者护理、诊断和治疗带来了显着的进步。这些尖端技术彻底改变了医疗保健行业,提高了准确性、效率和个性化护理。早期疾病检测、精准医疗、医学成像进步、虚拟健康助手和药物发现就是这些技术如何重塑医疗保健实践鲜明实例。
随着人工智能和机器学习的发展,行业将经历进一步的变革性进步,为医疗保健专业人员提供支持,并使全球患者受益。通过负责任地和合乎道德地采用这些技术,医疗健康提供者和患者将共同解锁人工智能和机器学习的全部潜力,并塑造医疗保健的未来。
全球大流行的教训
COVID-19疫情几乎没有预警,技术在通信、诊断、治疗、数据安全和流行病学方面发挥了至关重要的作用。辉瑞利用人工智能和机器学习开发了首批对抗这种致命病毒的疫苗,这些疫苗在不到12个月的时间里得到了评估和批准,可以紧急使用。展望未来,人工智能和机器学习将使临床试验更快速和准确,以领先于未来潜在的流行病。
7月,流行病防范创新联盟(CEPI)承诺向休斯顿卫理公会研究所领导的一个鉴定新出现病毒的机构提供近500万美元。 5月美国食品和药物管理局(FDA)发布了两篇论文,讨论了AI/ML在药物开发和制造方面的潜力。根据FDA的说法,AI/ML “有可能改变利益相关者开发、制造、使用和评估疗法的方式。最终,AI/ML可以帮助更快地为患者带来安全、有效和高质量的治疗。”
预见医疗保健问题
许多医疗保健公司正在利用这些技术来改善客户的医疗保健。在约翰霍普金斯大学,一种人工智能系统被用于比传统方法更快地检测患者患败血症的风险。约翰霍普金斯大学马龙医疗保健工程中心的创始研究主任Suchi Saria表示:“这是人工智能首次应用于病床旁,并被数千名医疗服务提供者使用,我们看到生命得到了挽救。”
这项技术最终也可以直接应用于医疗保健领域之外。例如,苹果手表已经可以监测一个人的心率、血压,以及佩戴者是否有任何不规则的节奏。随着人工智能/机器学习的进步,这款手表还可以经过训练,在佩戴者心脏病发作时通知他们,并告诉他们联系医生或去急诊室
此外,聊天机器人和虚拟健康助手将能够实时帮助病人——例如,判断发烧的孩子是否需要服用退烧药,或者判断孩子的症状是否需要前往急诊室。通过AI/ML模型创建的数据集对于通过临床试验、开发有效疫苗、预测潜在患者问题、提供更有效的诊断和改善患者护理来解决全球大流行非常重要
设置参数
AI/ML模型的一个吸引人之处在于,它们可以自我更新,自我学习。只要拥有云计算能力,提供的数据越多,与人工智能进行的互动越多,模型就能越快地提供更准确的答案。
最初,数据科学工程师需要向医疗保健提供者提供数据集的参数。例如,使用来自电子健康记录(EHRs)的历史数据和信息,可以为具有特定健康状况的人创建培训模型。然后,这些模型可以决定使用哪种药物,虚拟助手可以生成这些处方和药物。
当然,这也意味着这些培训必须以不违反相应法律法规为原则,如健康保险流通与责任法案(HIPAA)、患者隐私影响评估(PIA),同时不遗漏个人可识别信息(PII)。在训练模型时,工程师必须确保他们只输入患者的年龄、性别、职业和医疗状况。这意味着医疗保健提供者有责任验证他们在提供给工程师的信息中没有包含HIPAA或PIA信息。
减轻忧虑
有些人仍然担心,这是可以理解的。医疗保健提供者最关心的问题之一是隐私。对于提供者来说,创建特定于其组织的培训模型以确保数据永远不会离开他们的场所是很重要的。另一个主要问题是数据的准确性。因此,应该鼓励公司花必要的时间来创建他们的训练模式。人工智能可能需要三到六个月的时间来生成和验证准确的结果;然而,一旦公司开始定期看到这些准确的结果,他们就会对模型的预测更有信心。
未来就是现在
对于接受这项新技术的患者来说,他们仍然希望知道其中有人为因素,并且如果需要,他们可以与医生或护士交谈。提供者、医生、护士和研究科学家是医疗保健必要组成部分。医疗保健行业直接影响着人类。这就是为什么培训护士、医生和临床研究人员以及创建模型的数据工程师同等重要,这样他们就能对人工智能和机器学习有基本的了解,并了解如何正确使用历史数据。
行业中人工智能和机器学习在更好的医疗保健方面取得重大进展的可能性令人兴奋和创新,缩短了进行临床试验研究的时间,更快地向市场提供潜在的援助和治疗,为偏远国家和地区提供远程医疗,并在预测患者疾病方面提供更高的准确性。在行业中接受这一快速发展的技术对供应商和从业者都至关重要。
以上是揭示医疗保健领域中AI和ML的潜力的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

本站7月5日消息,格芯(GlobalFoundries)于今年7月1日发布新闻稿,宣布收购泰戈尔科技(TagoreTechnology)的功率氮化镓(GaN)技术及知识产权组合,希望在汽车、物联网和人工智能数据中心应用领域探索更高的效率和更好的性能。随着生成式人工智能(GenerativeAI)等技术在数字世界的不断发展,氮化镓(GaN)已成为可持续高效电源管理(尤其是在数据中心)的关键解决方案。本站援引官方公告内容,在本次收购过程中,泰戈尔科技公司工程师团队将加入格芯,进一步开发氮化镓技术。G
