目录
批处理 
内存管理
张量并行 
评估
首页 科技周边 人工智能 S-LoRA:一个GPU运行数千大模型成为可能

S-LoRA:一个GPU运行数千大模型成为可能

Nov 15, 2023 pm 02:14 PM
数据 训练

一般情况下,大型语言模型的部署通常采用"预训练-微调"的方式。然而,当对多个任务(如个性化助手)进行基础模型的微调时,训练和服务的成本会变得非常高。低秩适配(LowRank Adaptation,LoRA)是一种高效的参数微调方法,通常用于将基础模型适配到多个任务上,从而生成大量派生的LoRA适配程序

重新写作: 批量推理在服务过程中提供了许多机会,这种模式被证明可以通过微调适配器权重来实现与完全微调相当的性能。虽然这种方法可以实现低延迟的单个适配器推理和跨适配器的串行执行,但在同时为多个适配器提供服务时,会显着降低整体服务吞吐量并增加总延迟。因此,如何解决这些微调变体的大规模服务问题仍然未知

近期有来自UC伯克利、斯坦福等高校的研究人员在一篇论文中提出了一种被称为S-LoRA的新微调方法

S-LoRA:一个GPU运行数千大模型成为可能

  • 论文地址:https://arxiv.org/pdf/2311.03285.pdf
  • 项目地址:https://github.com/S-LoRA/S-LoRA

S-LoRA 是专为众多LoRA 适配程序的可扩展服务而设计的系统,它将所有适配程序存储在主内存中,并将当前运行查询所使用的适配程序取到GPU 内存中。

S-LoRA 提出了「统一分页」(Unified Paging)技术,即使用统一的内存池来管理不同等级的动态适配器权重和不同序列长度的 KV 缓存张量。此外,S-LoRA 还采用了新的张量并行策略和高度优化的定制 CUDA 内核,以实现 LoRA 计算的异构批处理。

这些功能允许S-LoRA以较小的成本在单个或多个GPU上为数千个LoRA适配器提供服务(同时为2000个适配器提供服务),并将额外的LoRA计算成本降至最低。相比之下,vLLM-packed需要维护多个权重副本,并且由于GPU内存限制,只能为少于5个适配器提供服务

与HuggingFace PEFT 和vLLM(仅支持LoRA 服务)等最先进的库相比,S-LoRA 的吞吐量最多可提高4 倍,服务的适配器数量可增加几个数量级。因此,S-LoRA 能够为许多特定任务的微调模型提供可扩展的服务,并为大规模定制微调服务提供了潜力。

S-LoRA:一个GPU运行数千大模型成为可能

S-LoRA包含三个主要创新部分。第四部分介绍了批处理策略,该策略用于分解base模型和LoRA适配器之间的计算。此外,研究人员还解决了需求调度的难题,包括适配器集群和准入控制等方面。跨并发适配器的批处理能力给内存管理带来了新的挑战。第五部分,研究人员将PagedAttention推广到Unfied Paging,支持动态加载LoRA适配器。这种方法使用统一的内存池以分页方式存储KV缓存和适配器权重,可以减少碎片并平衡KV缓存和适配器权重的动态变化大小。最后,第六部分介绍了新的张量并行策略,能够高效地解耦base模型和LoRA适配器

以下为重点内容:

批处理 

对于单个适配器,Hu等人(2021)提出了一种推荐的方法,即将适配器权重与基础模型权重合并,从而得到一个新模型(参见公式1)。这样做的好处是,在推理过程中不会有额外的适配器开销,因为新模型的参数数量与基础模型相同。实际上,这也是LoRA工作最初的一个显着特点

S-LoRA:一个GPU运行数千大模型成为可能

本文指出,将 LoRA 适配器合并到 base 模型中对于多 LoRA 高吞吐量服务设置来说效率很低。取而代之的是,研究者建议实时计算 LoRA 计算 xAB(如公式 2 所示)。

在 S-LoRA 中,计算 base 模型被批处理,然后使用定制的 CUDA 内核分别执行所有适配器的附加 xAB。这一过程如图 1 所示。研究者没有使用填充和 BLAS 库中的批处理 GEMM 内核来计算 LoRA,而是实施了定制的 CUDA 内核,以便在不使用填充的情况下实现更高效的计算,实施细节在第 5.3 小节中。

S-LoRA:一个GPU运行数千大模型成为可能

如果将 LoRA 适配器存储在主内存中,它们的数量可能会很大,但当前运行批所需的 LoRA 适配器数量是可控的,因为批大小受 GPU 内存的限制。为了利用这一优势,研究者将所有的 LoRA 适配卡都存储在主内存中,并在为当前正在运行的批进行推理时,仅将该批所需的 LoRA 适配卡取到 GPU RAM 中。在这种情况下,可服务的适配器最大数量受限于主内存大小。图 2 展示了这一过程。第 5 节也讨论了高效管理内存的技术

S-LoRA:一个GPU运行数千大模型成为可能

内存管理

与为单个 base 模型提供服务相比,同时为多个 LoRA 适配卡提供服务会带来新的内存管理挑战。为了支持多个适配器,S-LoRA 将它们存储在主内存中,并将当前运行批所需的适配器权重动态加载到 GPU RAM 中。

在这个过程中,存在两个明显的挑战。首先是内存碎片问题,这是由于动态加载和卸载不同大小的适配器权重所导致的。其次是适配器加载和卸载所带来的延迟开销。为了有效解决这些问题,研究者提出了「统一分页」的概念,并通过预取适配器权重的方式来实现 I/O 和计算的重叠

Unified Paging

研究者将PagedAttention的概念扩展为统一分页(Unified Paging)。统一分页不仅用于管理KV缓存,还用于管理适配器权重。统一分页使用统一内存池来联合管理KV缓存和适配器权重。为了实现这一目标,他们首先为内存池静态分配了一个大缓冲区,该缓冲区利用了所有可用空间,除了用于存储基础模型权重和临时激活张量的空间。KV缓存和适配器权重以分页的方式存储在内存池中,每个页面对应一个H向量。因此,序列长度为S的KV缓存张量占用S页,而R级的LoRA权重张量占用R页。图3展示了内存池的布局,其中KV缓存和适配器权重以交错和非连续的方式存储。这种方法大大减少了碎片化,确保不同级别的适配器权重能够以结构化和系统化的方式与动态KV缓存共存

S-LoRA:一个GPU运行数千大模型成为可能

张量并行 

此外,研究者为批量 LoRA 推断设计了新颖的张量并行策略,以支持大型 Transformer 模型的多 GPU 推断。张量并行是应用最广泛的并行方法,因为它的单程序多数据模式简化了其实施和与现有系统的集成。张量并行可以减少为大模型提供服务时每个 GPU 的内存使用量和延迟。在本文设置中,额外的 LoRA 适配器引入了新的权重矩阵和矩阵乘法,这就需要为这些新增项目制定新的分区策略。

S-LoRA:一个GPU运行数千大模型成为可能

评估

最终,研究人员通过为Llama-7B/13B/30B/70B提供服务来评估S-LoRA

S-LoRA:一个GPU运行数千大模型成为可能

结果表明,S-LoRA 可以在单个 GPU 或多个 GPU 上为数千个 LoRA 适配器提供服务,而且开销很小。与最先进的参数高效微调库 Huggingface PEFT 相比,S-LoRA 的吞吐量最多可提高 30 倍。与使用支持 LoRA 服务的高吞吐量服务系统 vLLM 相比,S-LoRA 可将吞吐量提高 4 倍,并将服务适配器的数量增加几个数量级。

更多研究细节,可参考原论文。

以上是S-LoRA:一个GPU运行数千大模型成为可能的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

使用ddrescue在Linux上恢复数据 使用ddrescue在Linux上恢复数据 Mar 20, 2024 pm 01:37 PM

DDREASE是一种用于从文件或块设备(如硬盘、SSD、RAM磁盘、CD、DVD和USB存储设备)恢复数据的工具。它将数据从一个块设备复制到另一个块设备,留下损坏的数据块,只移动好的数据块。ddreasue是一种强大的恢复工具,完全自动化,因为它在恢复操作期间不需要任何干扰。此外,由于有了ddasue地图文件,它可以随时停止和恢复。DDREASE的其他主要功能如下:它不会覆盖恢复的数据,但会在迭代恢复的情况下填补空白。但是,如果指示工具显式执行此操作,则可以将其截断。将数据从多个文件或块恢复到单

开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计! 开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计! Apr 03, 2024 pm 12:04 PM

0.这篇文章干了啥?提出了DepthFM:一个多功能且快速的最先进的生成式单目深度估计模型。除了传统的深度估计任务外,DepthFM还展示了在深度修复等下游任务中的最先进能力。DepthFM效率高,可以在少数推理步骤内合成深度图。下面一起来阅读一下这项工作~1.论文信息标题:DepthFM:FastMonocularDepthEstimationwithFlowMatching作者:MingGui,JohannesS.Fischer,UlrichPrestel,PingchuanMa,Dmytr

谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择 谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择 Apr 01, 2024 pm 07:46 PM

谷歌力推的JAX在最近的基准测试中性能已经超过Pytorch和TensorFlow,7项指标排名第一。而且测试并不是在JAX性能表现最好的TPU上完成的。虽然现在在开发者中,Pytorch依然比Tensorflow更受欢迎。但未来,也许有更多的大模型会基于JAX平台进行训练和运行。模型最近,Keras团队为三个后端(TensorFlow、JAX、PyTorch)与原生PyTorch实现以及搭配TensorFlow的Keras2进行了基准测试。首先,他们为生成式和非生成式人工智能任务选择了一组主流

你好,电动Atlas!波士顿动力机器人复活,180度诡异动作吓坏马斯克 你好,电动Atlas!波士顿动力机器人复活,180度诡异动作吓坏马斯克 Apr 18, 2024 pm 07:58 PM

波士顿动力Atlas,正式进入电动机器人时代!昨天,液压Atlas刚刚「含泪」退出历史舞台,今天波士顿动力就宣布:电动Atlas上岗。看来,在商用人形机器人领域,波士顿动力是下定决心要和特斯拉硬刚一把了。新视频放出后,短短十几小时内,就已经有一百多万观看。旧人离去,新角色登场,这是历史的必然。毫无疑问,今年是人形机器人的爆发年。网友锐评:机器人的进步,让今年看起来像人类的开幕式动作、自由度远超人类,但这真不是恐怖片?视频一开始,Atlas平静地躺在地上,看起来应该是仰面朝天。接下来,让人惊掉下巴

iPhone上的蜂窝数据互联网速度慢:修复 iPhone上的蜂窝数据互联网速度慢:修复 May 03, 2024 pm 09:01 PM

在iPhone上面临滞后,缓慢的移动数据连接?通常,手机上蜂窝互联网的强度取决于几个因素,例如区域、蜂窝网络类型、漫游类型等。您可以采取一些措施来获得更快、更可靠的蜂窝互联网连接。修复1–强制重启iPhone有时,强制重启设备只会重置许多内容,包括蜂窝网络连接。步骤1–只需按一次音量调高键并松开即可。接下来,按降低音量键并再次释放它。步骤2–该过程的下一部分是按住右侧的按钮。让iPhone完成重启。启用蜂窝数据并检查网络速度。再次检查修复2–更改数据模式虽然5G提供了更好的网络速度,但在信号较弱

超级智能体生命力觉醒!可自我更新的AI来了,妈妈再也不用担心数据瓶颈难题 超级智能体生命力觉醒!可自我更新的AI来了,妈妈再也不用担心数据瓶颈难题 Apr 29, 2024 pm 06:55 PM

哭死啊,全球狂炼大模型,一互联网的数据不够用,根本不够用。训练模型搞得跟《饥饿游戏》似的,全球AI研究者,都在苦恼怎么才能喂饱这群数据大胃王。尤其在多模态任务中,这一问题尤为突出。一筹莫展之际,来自人大系的初创团队,用自家的新模型,率先在国内把“模型生成数据自己喂自己”变成了现实。而且还是理解侧和生成侧双管齐下,两侧都能生成高质量、多模态的新数据,对模型本身进行数据反哺。模型是啥?中关村论坛上刚刚露面的多模态大模型Awaker1.0。团队是谁?智子引擎。由人大高瓴人工智能学院博士生高一钊创立,高

特斯拉机器人进厂打工,马斯克:手的自由度今年将达到22个! 特斯拉机器人进厂打工,马斯克:手的自由度今年将达到22个! May 06, 2024 pm 04:13 PM

特斯拉机器人Optimus最新视频出炉,已经可以在厂子里打工了。正常速度下,它分拣电池(特斯拉的4680电池)是这样的:官方还放出了20倍速下的样子——在小小的“工位”上,拣啊拣啊拣:这次放出的视频亮点之一在于Optimus在厂子里完成这项工作,是完全自主的,全程没有人为的干预。并且在Optimus的视角之下,它还可以把放歪了的电池重新捡起来放置,主打一个自动纠错:对于Optimus的手,英伟达科学家JimFan给出了高度的评价:Optimus的手是全球五指机器人里最灵巧的之一。它的手不仅有触觉

快手版Sora「可灵」开放测试:生成超120s视频,更懂物理,复杂运动也能精准建模 快手版Sora「可灵」开放测试:生成超120s视频,更懂物理,复杂运动也能精准建模 Jun 11, 2024 am 09:51 AM

什么?疯狂动物城被国产AI搬进现实了?与视频一同曝光的,是一款名为「可灵」全新国产视频生成大模型。Sora利用了相似的技术路线,结合多项自研技术创新,生产的视频不仅运动幅度大且合理,还能模拟物理世界特性,具备强大的概念组合能力和想象力。数据上看,可灵支持生成长达2分钟的30fps的超长视频,分辨率高达1080p,且支持多种宽高比。另外再划个重点,可灵不是实验室放出的Demo或者视频结果演示,而是短视频领域头部玩家快手推出的产品级应用。而且主打一个务实,不开空头支票、发布即上线,可灵大模型已在快影

See all articles