目录
Labs 导读
Part 02、半监督学习的假设 
Part 04、  总结 
首页 科技周边 人工智能 重新编写的标题:探究半监督学习的应用领域及其相关场景

重新编写的标题:探究半监督学习的应用领域及其相关场景

Nov 18, 2023 pm 10:21 PM
人工智能 半监督学习

重新编写的标题:探究半监督学习的应用领域及其相关场景

Labs 导读

随着互联网的发展,企业可以获得越来越多的数据。这些数据有助于企业更好地了解用户,即客户画像,并可以改善用户体验。然而,这些数据中可能存在大量未经标记的数据。如果所有数据都采用人工标记的方法,将会面临两个问题。首先,人工标记的时间成本较高,效率低下。随着数据量的增加,需要雇佣更多的人员和更长的时间,成本也会更高。其次,随着用户规模的增加,很难通过人工标记来跟上数据的增长速度

Part 01、  什么是半监督学习  

半监督学习是指使用既有有标签的数据又有无标签的数据训练模型。半监督学习通常会基于有标签的数据构建属性空间,再从无标签的数据中提取有效信息填充(或重构)属性空间。因此,通常半监督学习的初始训练集会划分为有标签的数据集D1和无标签数据集D2,然后通过预处理、特征提取等基本步骤后训练半监督学习模型,然后将训练好的模型用于生产环境,为用户提供服务。

重新编写的标题:探究半监督学习的应用领域及其相关场景

Part 02、半监督学习的假设 

为了实现标签数据有效补充有标签数据中的“有用”信息,对数据分部等方面做出一些假设。半监督学习的基础假设是p(x)中包含p(y|x)的信息,即无标签的数据应该包含对于标签预测有用的且与有标签的数据不相同的或者很难从有标签的数据中提取出来的信息。此外,还存在一些服务于算法的假设。例如,相似性假设(平滑假设)是指在数据样本构建的属性空间中,相近或相似的样本具有相同的标签;低密度分离假设是指在数据样本少的地方存在一个决策边界能区分不同标签的数据。

以上假设主要目的是为了表明有标签的数据与无标签的数据来源于相同的数据分布。

Part 03、  半监督学习算法分类 

半监督学习算法众多,可大致分为直推式学习(transductive learning) 归纳式学习(Inductive model),二者区别在于用于模型评估的测试数据集的选择。直推式的半监督学习是指需要预测标签的数据集就是用于训练的无标签数据集,学习的目的是为了进一步提高预测结果的准确性。归纳式学习则是为完全未知的数据集预测标签。

重新编写的标题:探究半监督学习的应用领域及其相关场景

此外,常见的半监督学习算法的步骤为:第一步会在有标签的数据上训练模型,然后用这个模型给无标签的数据打上伪标签,然后将伪标签和有标签的数据组合成新的训练集,在这个训练集上训练一个新的模型,最后用这个模型给预测数据集打上标签。

Part 04、  总结 

半监督学习的最大的问题是在很多情况下,模型的性能依赖于有标签的数据集,并且对于有标签数据集的质量要求较高,甚至半监督学习模型预测准确度与基于有标签数据集的有监督模型的结果相差不大,反而半监督模型为了有效提取无标签数据中的有效信息,会消耗更多的资源。因此,半监督学习的发展方向是提高算法的鲁棒性以及数据提取的有效性。

目前在半监督学习领域中,PU-Learning(正负样本学习)是比较热门的算法。这类算法主要应用于只有正样本和无标签数据的数据集。它的优点是在某些场景下,我们能够相对容易地获取可靠的正样本数据集,并且数据量相对较大。举例来说,在垃圾邮件检测中,我们很容易获取到大量的正常邮件数据

以上是重新编写的标题:探究半监督学习的应用领域及其相关场景的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
威尔R.E.P.O.有交叉游戏吗?
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 Jun 28, 2024 am 03:51 AM

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

使用Rag和Sem-Rag提供上下文增强AI编码助手 使用Rag和Sem-Rag提供上下文增强AI编码助手 Jun 10, 2024 am 11:08 AM

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 Jun 11, 2024 pm 03:57 PM

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

七个很酷的GenAI & LLM技术性面试问题 七个很酷的GenAI & LLM技术性面试问题 Jun 07, 2024 am 10:06 AM

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

你所不知道的机器学习五大学派 你所不知道的机器学习五大学派 Jun 05, 2024 pm 08:51 PM

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 Jul 25, 2024 am 06:42 AM

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 Jul 17, 2024 pm 06:37 PM

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

SK 海力士 8 月 6 日将展示 AI 相关新品:12 层 HBM3E、321-high NAND 等 SK 海力士 8 月 6 日将展示 AI 相关新品:12 层 HBM3E、321-high NAND 等 Aug 01, 2024 pm 09:40 PM

本站8月1日消息,SK海力士今天(8月1日)发布博文,宣布将出席8月6日至8日,在美国加利福尼亚州圣克拉拉举行的全球半导体存储器峰会FMS2024,展示诸多新一代产品。未来存储器和存储峰会(FutureMemoryandStorage)简介前身是主要面向NAND供应商的闪存峰会(FlashMemorySummit),在人工智能技术日益受到关注的背景下,今年重新命名为未来存储器和存储峰会(FutureMemoryandStorage),以邀请DRAM和存储供应商等更多参与者。新产品SK海力士去年在

See all articles