首页 科技周边 人工智能 中国科学院团队利用AI大模型训练技术解决同步辐射海量数据处理

中国科学院团队利用AI大模型训练技术解决同步辐射海量数据处理

Nov 20, 2023 pm 03:43 PM
理论

中国科学院团队利用AI大模型训练技术解决同步辐射海量数据处理

没有改变原始意思的情况下,需要重新编写成中文的句子是:编辑 | X

X 射线叠层相干衍射成像(X-ray ptychography)是一种理论上能够实现衍射极限分辨率的相干衍射成像技术,已广泛应用于材料、生命、半导体、能源等多种科学领域研究。

新一代同步辐射光源可提供高相干度和高亮度的X射线,推动相干成像技术向高通量多维度方向发展,使得 ptychography 在大体积样本的精细结构研究和功能表征方面具有极佳的应用前景。然而,新的实验模式与应用场景带来了海量数据在线解析的技术挑战,单次实验的原始衍射图谱数据量可达 PB 量级,成为第四代同步辐射光源上科学实验的最大数据源之一。此外,其相位恢复问题也是同步辐射数据处理领域最为困难的问题之一。

人工智能方法作为大数据分析和处理的利器,保持了传统算法的优势,并且突出体现了在海量实验数据在线分析方面的能力。

作为一种相对耗时的扫描成像技术,ptychography 的主要目标之一是实现实时分析。但是目前传统的 ptychography 重建算法很难实现在线重建的需求。研究团队基于卷积神经网络,提出了分组卷积的神经网络解码器结构,使得网络的训练以及重建速度更快,重建效果更好。神经网络可以学习从衍射图到真实物体的映射过程。得益于未来光源数据体量和质量的进一步提升,网络规模、参数量、训练数据量将进一步增加,给网络的性能以及泛化能力带来提升。

中国科学院高能同步辐射光源(HEPS)光束线软件团队开发了一个名为PtyNet的卷积神经网络框架,用于从X射线Ptychography实验数据中恢复出物体的精确投影。在强大的计算集群的支持下,PtyNet可以快速地从同步辐射光源获取数据进行训练,并迅速地对用户的实验数据进行图像重建

中国科学院团队利用AI大模型训练技术解决同步辐射海量数据处理

图 1

该研究题为「通过对大型预训练深度学习模型进行精调的高效ptychography重建策略」,于2023年11月9日在iScience杂志上发表

中国科学院团队利用AI大模型训练技术解决同步辐射海量数据处理

论文链接:
https://doi.org/10.1016/j.isci.2023.108420

由于不同实验数据所恢复的目标物体不同,团队还引入了微调策略对网络参数进行进一步优化。无监督的微调策略使网络拥有更强大的泛化能力和更高的重建分辨率。同步辐射光源可以为网络提供足够的数据量以得到一个更强大的预训练模型。即使对于一个未出现在网络内的新样品,网络也可以成功地进行重建(图2)。

中国科学院团队利用AI大模型训练技术解决同步辐射海量数据处理

需要重写的内容是:第二张图片

未来,该团队将继续进行将卷积神经网络应用于 X 射线相干成像领域的研究。利用微调以及大模型的策略,开发出一个相干成像的大模型。模型自身可以识别出不同的成像任务并且给出恢复结果。用户只需输入少量线站参数即可进行实时重建。

面对未来 EB 量级数据的挑战,HEPS 正在积极推动「大型科学软件框架 + AI for Science」的创新科研范式,并建立了一支专业的科学软件团队,开展实验控制、大数据采集与处理、人工智能、前沿学科算法、多尺度图像处理与数据挖掘等跨领域研究,为建设「智慧光源」奠定了基础。

以上是中国科学院团队利用AI大模型训练技术解决同步辐射海量数据处理的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

突破传统缺陷检测的界限,\'Defect Spectrum\'首次实现超高精度丰富语义的工业缺陷检测。 突破传统缺陷检测的界限,\'Defect Spectrum\'首次实现超高精度丰富语义的工业缺陷检测。 Jul 26, 2024 pm 05:38 PM

在现代制造业中,精准的缺陷检测不仅是保证产品质量的关键,更是提升生产效率的核心。然而,现有的缺陷检测数据集常常缺乏实际应用所需的精确度和语义丰富性,导致模型无法识别具体的缺陷类别或位置。为了解决这一难题,由香港科技大学广州和思谋科技组成的顶尖研究团队,创新性地开发出了“DefectSpectrum”数据集,为工业缺陷提供了详尽、语义丰富的大规模标注。如表一所示,相比其他工业数据集,“DefectSpectrum”数据集提供了最多的缺陷标注(5438张缺陷样本),最细致的缺陷分类(125种缺陷类别

英伟达对话模型ChatQA进化到2.0版本,上下文长度提到128K 英伟达对话模型ChatQA进化到2.0版本,上下文长度提到128K Jul 26, 2024 am 08:40 AM

开放LLM社区正是百花齐放、竞相争鸣的时代,你能看到Llama-3-70B-Instruct、QWen2-72B-Instruct、Nemotron-4-340B-Instruct、Mixtral-8x22BInstruct-v0.1等许多表现优良的模型。但是,相比于以GPT-4-Turbo为代表的专有大模型,开放模型在很多领域依然还有明显差距。在通用模型之外,也有一些专精关键领域的开放模型已被开发出来,比如用于编程和数学的DeepSeek-Coder-V2、用于视觉-语言任务的InternVL

数百万晶体数据训练,解决晶体学相位问题,深度学习方法PhAI登Science 数百万晶体数据训练,解决晶体学相位问题,深度学习方法PhAI登Science Aug 08, 2024 pm 09:22 PM

编辑|KX时至今日,晶体学所测定的结构细节和精度,从简单的金属到大型膜蛋白,是任何其他方法都无法比拟的。然而,最大的挑战——所谓的相位问题,仍然是从实验确定的振幅中检索相位信息。丹麦哥本哈根大学研究人员,开发了一种解决晶体相问题的深度学习方法PhAI,利用数百万人工晶体结构及其相应的合成衍射数据训练的深度学习神经网络,可以生成准确的电子密度图。研究表明,这种基于深度学习的从头算结构解决方案方法,可以以仅2埃的分辨率解决相位问题,该分辨率仅相当于原子分辨率可用数据的10%到20%,而传统的从头算方

谷歌AI拿下IMO奥数银牌,数学推理模型AlphaProof面世,强化学习 is so back 谷歌AI拿下IMO奥数银牌,数学推理模型AlphaProof面世,强化学习 is so back Jul 26, 2024 pm 02:40 PM

对于AI来说,奥数不再是问题了。本周四,谷歌DeepMind的人工智能完成了一项壮举:用AI做出了今年国际数学奥林匹克竞赛IMO的真题,并且距拿金牌仅一步之遥。上周刚刚结束的IMO竞赛共有六道赛题,涉及代数、组合学、几何和数论。谷歌提出的混合AI系统做对了四道,获得28分,达到了银牌水平。本月初,UCLA终身教授陶哲轩刚刚宣传了百万美元奖金的AI数学奥林匹克竞赛(AIMO进步奖),没想到7月还没过,AI的做题水平就进步到了这种水平。IMO上同步做题,做对了最难题IMO是历史最悠久、规模最大、最负

Nature观点,人工智能在医学中的测试一片混乱,应该怎么做? Nature观点,人工智能在医学中的测试一片混乱,应该怎么做? Aug 22, 2024 pm 04:37 PM

编辑|ScienceAI基于有限的临床数据,数百种医疗算法已被批准。科学家们正在讨论由谁来测试这些工具,以及如何最好地进行测试。DevinSingh在急诊室目睹了一名儿科患者因长时间等待救治而心脏骤停,这促使他探索AI在缩短等待时间中的应用。Singh利用了SickKids急诊室的分诊数据,与同事们建立了一系列AI模型,用于提供潜在诊断和推荐测试。一项研究表明,这些模型可以加快22.3%的就诊速度,将每位需要进行医学检查的患者的结果处理速度加快近3小时。然而,人工智能算法在研究中的成功只是验证此

为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 Jul 25, 2024 am 06:42 AM

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

PRO | 为什么基于 MoE 的大模型更值得关注? PRO | 为什么基于 MoE 的大模型更值得关注? Aug 07, 2024 pm 07:08 PM

2023年,几乎AI的每个领域都在以前所未有的速度进化,同时,AI也在不断地推动着具身智能、自动驾驶等关键赛道的技术边界。多模态趋势下,Transformer作为AI大模型主流架构的局面是否会撼动?为何探索基于MoE(专家混合)架构的大模型成为业内新趋势?大型视觉模型(LVM)能否成为通用视觉的新突破?...我们从过去的半年发布的2023年本站PRO会员通讯中,挑选了10份针对以上领域技术趋势、产业变革进行深入剖析的专题解读,助您在新的一年里为大展宏图做好准备。本篇解读来自2023年Week50

SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 Jul 17, 2024 pm 06:37 PM

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

See all articles