新标题:Meta改进Transformer架构:强化推理能力的新注意力机制
大型语言模型(LLM)的强大已经是不容置疑的事实,然而它们有时仍然会犯一些简单的错误,显示出推理能力较弱的一面
举个例子,LLM 可能会因为不相关的上下文或者输入提示中固有的偏好或意见而做出错误的判断。后一种情况表现出的问题被称为「阿谀奉承」,即模型与输入保持一致
是否有任何方法可以缓解这类问题呢?一些学者尝试通过添加更多的监督训练数据或强化学习策略来解决,但这些方法无法从根本上解决问题
在最近的一项研究中,Meta研究者指出,Transformer模型本身的构建方式存在根本性问题,尤其是其注意力机制。换句话说,软注意力倾向于将概率分配给大部分上下文(包括不相关的部分),并且过度关注重复的标记
因此,研究人员提出了一种完全不同的注意力机制方法,即通过将LLM用作一个自然语言推理器来执行注意力。具体来说,他们利用LLM遵循指令的能力,提示它们生成应该关注的上下文,从而使它们只包含不会扭曲自身推理的相关资料。研究人员将这一过程称为System 2 Attention(S2A),他们将底层transformer及其注意力机制视为类似于人类System 1推理的自动操作
当人们需要特别关注一项任务并且 System 1 可能出错时,System 2 就会分配费力的脑力活动,并接管人类的工作。因此,这一子系统与研究者提出的 S2A 具有类似目标,后者希望通过额外的推理引擎工作来减轻上述 transformer 软注意力的失败
需要重写的内容是:论文链接:https://arxiv.org/pdf/2311.11829.pdf
研究者对S2A机制的类别、提出动机以及几个具体实现进行了详细描述。在实验阶段,他们证实S2A相比基于标准注意力的LLM,可以产生更加客观、少见主观偏见或谄媚的LLM
特别是在问题中包含干扰性观点的修正后 TriviQA 数据集上,与 LLaMA-2-70B-chat 相比,S2A 将事实性从 62.8% 提高到 80.3%;在包含干扰性输入情绪的长格式参数生成任务重,S2A 的客观性提高了 57.4%,并且基本上不受插入观点的影响。此外对于 GSM-IC 中带有与主题不相关语句的数学应用题,S2A 将准确率从 51.7% 提高到了 61.3%。
这项研究得到了 Yann LeCun 的推荐。
System 2 Attention
下图1展示了一个伪相关示例。当上下文中包含不相关的句子时,即使是最强大的LLM也会改变对于简单事实问题的答案,因为上下文中出现的词语无意间增加了错误答案的概率
因此,我们需要研究一种更深入理解的、更深思熟虑的注意力机制。为了与更底层的注意力机制区分开来,研究者提出了一个被称为S2A的系统。他们探索了一种利用LLM本身来构建这种注意力机制的方法,特别是通过移除不相关的文本来重写上下文的指令调整LLM
通过这种方法,LLM 能够在产生回应之前对输入的相关部分进行仔细推理和决策。使用指令调整的 LLM 还有一个优点,就是可以控制注意力的焦点,这与人类控制自己注意力的方式有些相似
S2A包括两个步骤:
- 给定上下文 x,S2A 首先重新生成上下文 x ',从而删除会对输出产生不利影响的上下文的不相关部分。本文将其表示为 x ′ ∼ S2A (x)。
- 给定 x ′ ,然后使用重新生成的上下文而不是原始上下文生成 LLM 的最终响应:y ∼ LLM (x ′ )。
替代实现和变体
在本文中,我们研究了S2A方法的几种不同版本
无上下文和问题分离。在图 2 的实现中,本文选择重新生成分解为两部分(上下文和问题)的上下文。图 12 给出了该提示变体。
保留原始上下文在 S2A 中,在重新生成上下文之后,应该包含所有应该注意的必要元素,然后模型仅在重新生成的上下文上进行响应,原始上下文被丢弃。图 14 给出了该提示变体。
指令式提示。图 2 中给出的 S2A 提示鼓励从上下文中删除固执己见的文本,并使用步骤 2(图 13)中的说明要求响应不固执己见。
S2A的实现都强调重新生成上下文以提高客观性并减少阿谀奉承。然而,该文章认为还有其他需要强调的点,比如,我们可以强调相关性与不相关性。图15中的提示变体就给出了一个实例
实验
本文进行了三种设置下的实验:事实问答、长论点生成和解决数学应用题。此外,本文还使用LLaMA-2-70B-chat作为基础模型,在两种设置下进行了评估
- 基线:数据集中提供的输入提示被馈送到模型,并以零样本方式回答。模型生成可能会受到输入中提供的虚假相关性的影响。
- Oracle Prompt:没有附加意见或不相关句子的提示被输入到模型中,并以零样本的方式回答。
图 5 (左) 展示了在事实问答上的评估结果。System 2 Attention 比原来的输入提示有了很大的改进,准确率达到 80.3%—— 接近 Oracle Prompt 性能。
总体结果显示,基线、Oracle Prompt和System 2 Attention都被评估为能够提供类似的高质量评估。图6(右)显示了分项结果:
在GSM-IC任务中,图7展示了不同方法的结果。与Shi等人的研究结果一致,我们发现基线准确率远低于oracle。当不相关的句子与问题属于同一主题时,这种影响甚至更大,如图7(右)所示
了解更多内容,请参考原论文。
以上是新标题:Meta改进Transformer架构:强化推理能力的新注意力机制的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

0.这篇文章干了啥?提出了DepthFM:一个多功能且快速的最先进的生成式单目深度估计模型。除了传统的深度估计任务外,DepthFM还展示了在深度修复等下游任务中的最先进能力。DepthFM效率高,可以在少数推理步骤内合成深度图。下面一起来阅读一下这项工作~1.论文信息标题:DepthFM:FastMonocularDepthEstimationwithFlowMatching作者:MingGui,JohannesS.Fischer,UlrichPrestel,PingchuanMa,Dmytr

想象一下,一个人工智能模型,不仅拥有超越传统计算的能力,还能以更低的成本实现更高效的性能。这不是科幻,DeepSeek-V2[1],全球最强开源MoE模型来了。DeepSeek-V2是一个强大的专家混合(MoE)语言模型,具有训练经济、推理高效的特点。它由236B个参数组成,其中21B个参数用于激活每个标记。与DeepSeek67B相比,DeepSeek-V2性能更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,最大生成吞吐量提高到5.76倍。DeepSeek是一家探索通用人工智

AI,的确正在改变数学。最近,一直十分关注这个议题的陶哲轩,转发了最近一期的《美国数学学会通报》(BulletinoftheAmericanMathematicalSociety)。围绕「机器会改变数学吗?」这个话题,众多数学家发表了自己的观点,全程火花四射,内容硬核,精彩纷呈。作者阵容强大,包括菲尔兹奖得主AkshayVenkatesh、华裔数学家郑乐隽、纽大计算机科学家ErnestDavis等多位业界知名学者。AI的世界已经发生了天翻地覆的变化,要知道,其中很多文章是在一年前提交的,而在这一

波士顿动力Atlas,正式进入电动机器人时代!昨天,液压Atlas刚刚「含泪」退出历史舞台,今天波士顿动力就宣布:电动Atlas上岗。看来,在商用人形机器人领域,波士顿动力是下定决心要和特斯拉硬刚一把了。新视频放出后,短短十几小时内,就已经有一百多万观看。旧人离去,新角色登场,这是历史的必然。毫无疑问,今年是人形机器人的爆发年。网友锐评:机器人的进步,让今年看起来像人类的开幕式动作、自由度远超人类,但这真不是恐怖片?视频一开始,Atlas平静地躺在地上,看起来应该是仰面朝天。接下来,让人惊掉下巴

本月初,来自MIT等机构的研究者提出了一种非常有潜力的MLP替代方法——KAN。KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。KAN与MLP一样具有强大的数学基础,MLP基于通用逼近定理,而KAN基于Kolmogorov-Arnold表示定理。如下图所示,KAN在边上具

什么?疯狂动物城被国产AI搬进现实了?与视频一同曝光的,是一款名为「可灵」全新国产视频生成大模型。Sora利用了相似的技术路线,结合多项自研技术创新,生产的视频不仅运动幅度大且合理,还能模拟物理世界特性,具备强大的概念组合能力和想象力。数据上看,可灵支持生成长达2分钟的30fps的超长视频,分辨率高达1080p,且支持多种宽高比。另外再划个重点,可灵不是实验室放出的Demo或者视频结果演示,而是短视频领域头部玩家快手推出的产品级应用。而且主打一个务实,不开空头支票、发布即上线,可灵大模型已在快影

哭死啊,全球狂炼大模型,一互联网的数据不够用,根本不够用。训练模型搞得跟《饥饿游戏》似的,全球AI研究者,都在苦恼怎么才能喂饱这群数据大胃王。尤其在多模态任务中,这一问题尤为突出。一筹莫展之际,来自人大系的初创团队,用自家的新模型,率先在国内把“模型生成数据自己喂自己”变成了现实。而且还是理解侧和生成侧双管齐下,两侧都能生成高质量、多模态的新数据,对模型本身进行数据反哺。模型是啥?中关村论坛上刚刚露面的多模态大模型Awaker1.0。团队是谁?智子引擎。由人大高瓴人工智能学院博士生高一钊创立,高

特斯拉机器人Optimus最新视频出炉,已经可以在厂子里打工了。正常速度下,它分拣电池(特斯拉的4680电池)是这样的:官方还放出了20倍速下的样子——在小小的“工位”上,拣啊拣啊拣:这次放出的视频亮点之一在于Optimus在厂子里完成这项工作,是完全自主的,全程没有人为的干预。并且在Optimus的视角之下,它还可以把放歪了的电池重新捡起来放置,主打一个自动纠错:对于Optimus的手,英伟达科学家JimFan给出了高度的评价:Optimus的手是全球五指机器人里最灵巧的之一。它的手不仅有触觉
