目录
FastGPT
私有化部署
1、安装 Docker
2、容器编排
创建一个本地目录并且进入该目录
docker-compose.yml 配置文件
config.json 配置文件
3、启动容器
4、访问 FastGPT
构建知识库
创建知识库
使用知识库
创建应用
关联知识库
开始对话
总结
首页 科技周边 人工智能 快速建立大型语言模型AI知识库,仅需三分钟

快速建立大型语言模型AI知识库,仅需三分钟

Nov 26, 2023 am 11:18 AM
ai 数据 知识库

FastGPT

FastGPT 是一个使用 LLM 大语言模型构建的知识库问答系统,可以提供即插即用的数据处理和模型调用功能。同时,它还支持通过 Flow 可视化工作流编排,以实现复杂的问答场景

知识库核心流程图

快速建立大型语言模型AI知识库,仅需三分钟图片

图片来源:https://doc.fastgpt.in

私有化部署

这里使用 Docker Compose 快速进行 FastGPT 私有化部署

1、安装 Docker

# 安装 Dockercurl -fsSL https://get.docker.com | bash -s docker --mirror Aliyunsystemctl enable --now docker# 安装 docker-composecurl -L https://github.com/docker/compose/releases/download/2.20.3/docker-compose-`uname -s`-`uname -m` -o /usr/local/bin/docker-composechmod +x /usr/local/bin/docker-compose# 验证安装docker -vdocker-compose -v
登录后复制

如果已经安装,直接跳过就是

2、容器编排

创建一个本地目录并且进入该目录
mkdir tinywan-fastgptcd tinywan-fastgpt
登录后复制

以上创建目录路径为/d/Tinywan/GPT/tinywan-fastgpt

docker-compose.yml 配置文件
version: '3.3'services:pg:image: registry.cn-hangzhou.aliyuncs.com/fastgpt/pgvector:v0.5.0 # 阿里云container_name: pgrestart: alwaysports: # 生产环境建议不要暴露- 5432:5432networks:- fastgptenvironment:# 这里的配置只有首次运行生效。修改后,重启镜像是不会生效的。需要把持久化数据删除再重启,才有效果- POSTGRES_USER=username- POSTGRES_PASSWORD=password- POSTGRES_DB=postgresvolumes:- ./pg/data:/var/lib/postgresql/datamongo:image: mongo:5.0.18# image: registry.cn-hangzhou.aliyuncs.com/fastgpt/mongo:5.0.18 # 阿里云container_name: mongorestart: alwaysports: # 生产环境建议不要暴露- 27017:27017networks:- fastgptenvironment:# 这里的配置只有首次运行生效。修改后,重启镜像是不会生效的。需要把持久化数据删除再重启,才有效果- MONGO_INITDB_ROOT_USERNAME=username- MONGO_INITDB_ROOT_PASSWORD=passwordvolumes:- ./mongo/data:/data/dbfastgpt:container_name: fastgptimage: registry.cn-hangzhou.aliyuncs.com/fastgpt/fastgpt:latest # 阿里云ports:- 3000:3000networks:- fastgptdepends_on:- mongo- pgrestart: alwaysenvironment:# root 密码,用户名为: root- DEFAULT_ROOT_PSW=123465# 中转地址,如果是用官方号,不需要管- OPENAI_BASE_URL=https://api.openai.com/v1- CHAT_API_KEY=sb-xxx- DB_MAX_LINK=5 # database max link- TOKEN_KEY=any- ROOT_KEY=root_key- FILE_TOKEN_KEY=filetoken# mongo 配置,不需要改. 如果连不上,可能需要去掉 ?authSource=admin- MONGODB_URI=mongodb://username:password@mongo:27017/fastgpt?authSource=admin# pg配置. 不需要改- PG_URL=postgresql://username:password@pg:5432/postgresvolumes:- ./config.json:/app/data/config.jsonnetworks:fastgpt:
登录后复制

注:请填写CHAT_API_KEY对应的值。

config.json 配置文件
{"SystemParams": {"pluginBaseUrl": "","vectorMaxProcess": 15,"qaMaxProcess": 15,"pgHNSWEfSearch": 100},"ChatModels": [{"model": "gpt-3.5-turbo-1106","name": "GPT35-1106","price": 0,"maxContext": 16000,"maxResponse": 4000,"quoteMaxToken": 2000,"maxTemperature": 1.2,"censor": false,"vision": false,"defaultSystemChatPrompt": ""},{"model": "gpt-3.5-turbo-16k","name": "GPT35-16k","maxContext": 16000,"maxResponse": 16000,"price": 0,"quoteMaxToken": 8000,"maxTemperature": 1.2,"censor": false,"vision": false,"defaultSystemChatPrompt": ""},{"model": "gpt-4","name": "GPT4-8k","maxContext": 8000,"maxResponse": 8000,"price": 0,"quoteMaxToken": 4000,"maxTemperature": 1.2,"censor": false,"vision": false,"defaultSystemChatPrompt": ""},{"model": "gpt-4-vision-preview","name": "GPT4-Vision","maxContext": 128000,"maxResponse": 4000,"price": 0,"quoteMaxToken": 100000,"maxTemperature": 1.2,"censor": false,"vision": true,"defaultSystemChatPrompt": ""}],"QAModels": [{"model": "gpt-3.5-turbo-16k","name": "GPT35-16k","maxContext": 16000,"maxResponse": 16000,"price": 0}],"CQModels": [{"model": "gpt-3.5-turbo-1106","name": "GPT35-1106","maxContext": 16000,"maxResponse": 4000,"price": 0,"functionCall": true,"functionPrompt": ""},{"model": "gpt-4","name": "GPT4-8k","maxContext": 8000,"maxResponse": 8000,"price": 0,"functionCall": true,"functionPrompt": ""}],"ExtractModels": [{"model": "gpt-3.5-turbo-1106","name": "GPT35-1106","maxContext": 16000,"maxResponse": 4000,"price": 0,"functionCall": true,"functionPrompt": ""}],"QGModels": [{"model": "gpt-3.5-turbo-1106","name": "GPT35-1106","maxContext": 1600,"maxResponse": 4000,"price": 0}],"VectorModels": [{"model": "text-embedding-ada-002","name": "Embedding-2","price": 0.2,"defaultToken": 700,"maxToken": 3000}],"AudioSpeechModels": [{"model": "tts-1","name": "OpenAI TTS1","price": 0,"voices": [{"label": "Alloy","value": "alloy","bufferId": "openai-Alloy"},{"label": "Echo","value": "echo","bufferId": "openai-Echo"},{"label": "Fable","value": "fable","bufferId": "openai-Fable"},{"label": "Onyx","value": "onyx","bufferId": "openai-Onyx"},{"label": "Nova","value": "nova","bufferId": "openai-Nova"},{"label": "Shimmer","value": "shimmer","bufferId": "openai-Shimmer"}]}],"WhisperModel": {"model": "whisper-1","name": "Whisper1","price": 0}}
登录后复制

3、启动容器

通过命令docker-compose pull 获取更新版本的镜像

快速建立大型语言模型AI知识库,仅需三分钟图片

通过命令docker-compose up -d 启动容器

快速建立大型语言模型AI知识库,仅需三分钟图片

查看容器的启动状态

快速建立大型语言模型AI知识库,仅需三分钟图片

4、访问 FastGPT

目前可以通过 ip:3000 直接访问。这里是本地部署,所以直接通过 http://127.0.0.1:3000 直接访问即可。

部署成功,可访问以下页面:

快速建立大型语言模型AI知识库,仅需三分钟图片

登录用户名为 root,密码为docker-compose.yml环境变量里设置的 DEFAULT_ROOT_PSW。

成功登录,您将被重定向到以下页面:

快速建立大型语言模型AI知识库,仅需三分钟图片

构建知识库

创建知识库

登录成功后,我们可以新建一个知识库,并将其命名为开源技术小栈

快速建立大型语言模型AI知识库,仅需三分钟图片

将个人经历导入知识库的方式是通过文件

需要进行改写的内容是:【新建/导入】【文件导入】。 改写后的内容:【创建/导入】【文件导入】

快速建立大型语言模型AI知识库,仅需三分钟图片

确认后就开始将当前数据转化为向量数据

快速建立大型语言模型AI知识库,仅需三分钟图片

在选择文件导入时,可以选择直接分段方案。直接分段会利用句子分词器对文本进行一定长度拆分,最终分割成多组的q。如果选择了直接分段方案,建议在应用设置引用提示词时,使用通用模板即可,无需选择问答模板

导入成功

快速建立大型语言模型AI知识库,仅需三分钟图片

至此,个人知识库已经建好了。尝试进行测试问答

快速建立大型语言模型AI知识库,仅需三分钟图片

重新书写后的内容:重新连接训练数据

https://mp.weixin.qq.com/s/1GD8eKrxJWXdgS3OKR4VHQhttps://mp.weixin.qq.com/s/BFdfDXHavZ_jZwVaFq2duQhttps://mp.weixin.qq.com/s/mNhMCzUtLUKrIzqSVa-qZAhttps://mp.weixin.qq.com/s/n4n-0UCWJW9u2N1ca3HisQhttps://mp.weixin.qq.com/s/WXAPxHYteX7h1Hu73KEnFQhttps://mp.weixin.qq.com/s/chI8IbenaMFejvS7blLsBw
登录后复制

快速建立大型语言模型AI知识库,仅需三分钟图片

等待所有数据准备就绪

快速建立大型语言模型AI知识库,仅需三分钟图片

使用知识库

创建应用

使用知识库必须要创建一个应用

快速建立大型语言模型AI知识库,仅需三分钟图片

关联知识库

已添加开场白并选择绑定相应的知识库开源技术堆栈

快速建立大型语言模型AI知识库,仅需三分钟图片

点击保存预留后,可以直接在右边调试预览框预览对话进行文档内容测试。

开始对话

快速建立大型语言模型AI知识库,仅需三分钟图片

快速建立大型语言模型AI知识库,仅需三分钟图片

请点击链接查看知识库引用

快速建立大型语言模型AI知识库,仅需三分钟图片

打开对应链接可以直接跳转到微信公众号文章地址

总结

构建私有数据训练服务,针对问题提供精准回答。可以通过AI服务训练自有数据,形成AI知识库,然后创建不同的机器人针对用户问题提供精准回答。并且可以通过API接口很方便整合到自己的产品服务中。

以上是快速建立大型语言模型AI知识库,仅需三分钟的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

如何检查CentOS HDFS配置 如何检查CentOS HDFS配置 Apr 14, 2025 pm 07:21 PM

检查CentOS系统中HDFS配置的完整指南本文将指导您如何有效地检查CentOS系统上HDFS的配置和运行状态。以下步骤将帮助您全面了解HDFS的设置和运行情况。验证Hadoop环境变量:首先,确认Hadoop环境变量已正确设置。在终端执行以下命令,验证Hadoop是否已正确安装并配置:hadoopversion检查HDFS配置文件:HDFS的核心配置文件位于/etc/hadoop/conf/目录下,其中core-site.xml和hdfs-site.xml至关重要。使用

centos关机命令行 centos关机命令行 Apr 14, 2025 pm 09:12 PM

CentOS 关机命令为 shutdown,语法为 shutdown [选项] 时间 [信息]。选项包括:-h 立即停止系统;-P 关机后关电源;-r 重新启动;-t 等待时间。时间可指定为立即 (now)、分钟数 ( minutes) 或特定时间 (hh:mm)。可添加信息在系统消息中显示。

CentOS上GitLab的备份方法有哪些 CentOS上GitLab的备份方法有哪些 Apr 14, 2025 pm 05:33 PM

CentOS系统下GitLab的备份与恢复策略为了保障数据安全和可恢复性,CentOS上的GitLab提供了多种备份方法。本文将详细介绍几种常见的备份方法、配置参数以及恢复流程,帮助您建立完善的GitLab备份与恢复策略。一、手动备份利用gitlab-rakegitlab:backup:create命令即可执行手动备份。此命令会备份GitLab仓库、数据库、用户、用户组、密钥和权限等关键信息。默认备份文件存储于/var/opt/gitlab/backups目录,您可通过修改/etc/gitlab

centos安装mysql centos安装mysql Apr 14, 2025 pm 08:09 PM

在 CentOS 上安装 MySQL 涉及以下步骤:添加合适的 MySQL yum 源。执行 yum install mysql-server 命令以安装 MySQL 服务器。使用 mysql_secure_installation 命令进行安全设置,例如设置 root 用户密码。根据需要自定义 MySQL 配置文件。调整 MySQL 参数和优化数据库以提升性能。

CentOS下GitLab的日志如何查看 CentOS下GitLab的日志如何查看 Apr 14, 2025 pm 06:18 PM

CentOS系统下查看GitLab日志的完整指南本文将指导您如何查看CentOS系统中GitLab的各种日志,包括主要日志、异常日志以及其他相关日志。请注意,日志文件路径可能因GitLab版本和安装方式而异,若以下路径不存在,请检查GitLab安装目录及配置文件。一、查看GitLab主要日志使用以下命令查看GitLabRails应用程序的主要日志文件:命令:sudocat/var/log/gitlab/gitlab-rails/production.log此命令会显示produc

CentOS上PyTorch的分布式训练如何操作 CentOS上PyTorch的分布式训练如何操作 Apr 14, 2025 pm 06:36 PM

在CentOS系统上进行PyTorch分布式训练,需要按照以下步骤操作:PyTorch安装:前提是CentOS系统已安装Python和pip。根据您的CUDA版本,从PyTorch官网获取合适的安装命令。对于仅需CPU的训练,可以使用以下命令:pipinstalltorchtorchvisiontorchaudio如需GPU支持,请确保已安装对应版本的CUDA和cuDNN,并使用相应的PyTorch版本进行安装。分布式环境配置:分布式训练通常需要多台机器或单机多GPU。所

CentOS上PyTorch的GPU支持情况如何 CentOS上PyTorch的GPU支持情况如何 Apr 14, 2025 pm 06:48 PM

在CentOS系统上启用PyTorchGPU加速,需要安装CUDA、cuDNN以及PyTorch的GPU版本。以下步骤将引导您完成这一过程:CUDA和cuDNN安装确定CUDA版本兼容性:使用nvidia-smi命令查看您的NVIDIA显卡支持的CUDA版本。例如,您的MX450显卡可能支持CUDA11.1或更高版本。下载并安装CUDAToolkit:访问NVIDIACUDAToolkit官网,根据您显卡支持的最高CUDA版本下载并安装相应的版本。安装cuDNN库:前

docker原理详解 docker原理详解 Apr 14, 2025 pm 11:57 PM

Docker利用Linux内核特性,提供高效、隔离的应用运行环境。其工作原理如下:1. 镜像作为只读模板,包含运行应用所需的一切;2. 联合文件系统(UnionFS)层叠多个文件系统,只存储差异部分,节省空间并加快速度;3. 守护进程管理镜像和容器,客户端用于交互;4. Namespaces和cgroups实现容器隔离和资源限制;5. 多种网络模式支持容器互联。理解这些核心概念,才能更好地利用Docker。

See all articles