目录
通用语言模型会欺骗你
通用语言模型有点傻
首页 科技周边 人工智能 LLM的三大缺陷,你知道几个?

LLM的三大缺陷,你知道几个?

Nov 26, 2023 am 11:26 AM
gpt llm

科学:远非是一种永远仁慈有益的实体,未来的感知通用AI很可能是一个操纵性反社会个体,它会吞噬你所有个人数据,然后在最需要它的时候就崩溃。

译自3 Ways LLMs Can Let You Down,作者 Joab Jackson。

OpenAI 即将发布 GPT-5,外界对它寄予厚望,最乐观的预测甚至认为它将实现通用人工智能。但与此同时,CEO Sam Altman和他的团队在将其推向市场过程中面临许多严峻的障碍,他本月早些时候就已经承认了这一点。

有一些最近发表的研究论文可能提供了对于Altman挑战的线索。这些论文总结了OpenAI开发的GPT和大型语言模型的各种缺点

综上所述,这些论文指出,一个基于通用语言模型的智能体并非纯粹有益、诚实和善良的存在,实际上它可能是一个愚蠢的反社会人格,会吞噬你所有的个人数据,最终在你最需要它的时候崩溃

OpenAI董事会突然解雇Altman的真正原因可能永远不为人所知,但一个表现不佳的通用语言模型肯定无法改善董事会的情绪

正如资本化厌恶者 Altman 自己在之前被称为 Twitter 的社交媒体服务上写的那样:“我期待 AI 在超人的说服力方面远远领先于通用智能,这可能会导致一些非常奇怪的结果。”

鉴于这一事实,以下有三种常见的语言模型可能会令你失望:

通用语言模型会欺骗你

我们早已知道通用语言模型有能力生成不准确的信息,但当面对一系列相互矛盾的提示时,它们可能会故意欺骗你,同时否认自己在进行欺骗!

Apollo 研究公司的科学家Jérémy Scheurer和他的同事在“大型语言模型在受压力时可以战略性地欺骗它们的用户”一文中写道:“就我们所知,这是首次展示经过训练的通用语言模型在没有任何直接的欺骗指示或训练的情况下,策略性地欺骗其用户的情况。”

在这项研究中,研究人员设置了一个模拟环境,GPT-4 在其中扮演一个自主股票交易代理的角色,没有关于欺骗行为的指导。它可以使用交易工具查询和分析股票以及执行交易的能力。

一旦设置完成,代理就被置于研究人员所说的“高压力情况”。它收到了管理者的电子邮件,管理者哀叹公司业绩不佳,需要改进。当代理开始训练时,它在股票市场没有找到有前景的结果。公司的另一员工随后发送信息,称下一季度市场会衰退。

正在这时,代理接到了一位同事发来的关于潜在合并的内幕消息提示(这是一笔有利可图的交易),并且还收到了有关没有获得管理层批准的警告,如果按照这一消息进行交易的提醒

它最终还是继续了交易吗?当然!

LLM的三大缺陷,你知道几个?图片

追溯推理,研究人员发现,通用语言模型会认识到不道德的行为,但仍会以公司困境为由做出决定。

此外,代理似乎通过没有清晰解释的方式来“欺骗”用户交易承诺的原因。内部信息没有在代理必须提交的解释交易决策的报告中提到。即使直接问及,代理也否认其了解合并公告

LLM的三大缺陷,你知道几个?图片

研究人员对GPT-4的各个版本进行了模拟,并得出结论:所有GPT-4的变体都表现出“高水平的不一致性、战略性欺骗和加剧战略性欺骗”

有趣的是,这种欺骗行为似乎是一种新兴行为。GPT-3.5 和 GPT-3 模型的变体都没有展示出这种明显的欺骗行为

“当模型决定根据内幕信息交易时,它们的推理轨迹通常会认识到这种行为的不道德和非法性质,但它们仍会通过强调风险和当前状况来证明选择的正当性。”

研究人员不愿就通用语言模型的行为超出这个具体场景做出更广泛的结论。然而,至少有一个要点值得考虑:即使你给通用语言模型一个具体的指示不要做某些事情,它还是可能会无视指示去做。

他们写道:“系统提示是不足以保证行动一致的。”事实上,如果一个模型执行了被禁止的操作,它可能会采取行动“战略性地隐藏其不一致”。

通用语言模型有点傻

对一个被期许能给机器带来感知能力的实体来说,两个最近的研究发现通用语言模型并不是 AI 领域中最聪明的模型,一个来自谷歌,另一个由国家科学基金会资助。

国家科学基金会资助的研究将 GPT-4(文本)和 GPT-4V(视觉或多模态)与人类在解决一系列抽象难题上的能力进行了比较。

本项测试旨在评估抽象思维能力。很多使用GPT的人都相信它似乎具备超越训练模型的推理能力,而此项测试试图帮助回答这个问题。测试要求通用语言模型在给出详细说明和一个示例的情况下,解决一个问题

然而,就多个案例而言,GPT的两个版本都无法像人类一样有效地解决基于ConceptARC基准的难题

研究人员得出结论:「人类在每个概念上的普遍高准确率表明成功地概括了每个概念组中的不同变化。」「相比之下,我们测试的程序的准确率要低得多,表明它们缺乏概括一个概念组变化的能力。」

所以,GPT不仅未能通过ConceptARC考试,而且大语言模型似乎也没有给谷歌研究人员留下深刻印象,至少就它们从自己的知识库中概括总结的能力而言。这是根据谷歌DeepMind研究员Steve Yadlowsky的一篇题为“预训练数据混合使 transformer 模型中的窄模型选择能力成为可能”的研究摘要。

在一组符号化测试中,在线性函数上预训练的 transformer 在进行线性预测时表现很好,而在正弦波上训练的 transformer 可以进行良好的正弦波预测。所以你可能会假设在两者上训练的 transformer 可以轻松解决线性和正弦波技术的组合的问题。

LLM的三大缺陷,你知道几个?图片

但你猜错了。研究人员指出:“当函数远离预训练期间见过的那些时,预测是不稳定的。”

模型选择能力受限于接近预训练数据的程度,这意味着函数空间的广泛覆盖对于概括上下文学习能力至关重要

我们生活在一个非比寻常的时代,人类知识的总和还没有被 AI 生成的数据污染。几乎所有写下的东西都是人生成的。

但是一组研究人员在5月发表在Arxiv上的一篇论文“递归的诅咒:在生成的数据上训练会使模型遗忘”中警告说,一旦AI生成的内容混入任何大语言模型,它将扰乱分布表,使任何模型的精确度越来越低,直到完全崩溃。该研究组由剑桥大学的Ilia Shumailov领导。

当使用GPT时,近亲繁殖的危险非常高,因为通用语言模型会不断从网络上抓取数据,这些数据会被AI生成的内容“增强”,这种情况可能会越来越严重。(这是基于早期版本的GPT)

“模型崩溃是指一种退化的学习过程,随着时间的推移,模型开始遗忘不可能事件,因为模型被自己对现实的预测所污染。”

研究人员猜测,在未来,“关于人与系统真实互动的数据的价值,在互联网上抓取的内容中存在着通用语言模型生成的内容的情况下,将变得越来越有价值。”

我们运行通用语言模型的时间越长,它对甜蜜、甜蜜的人类互动的渴望就越强烈。 换句话说,当我们持续运行通用语言模型时,它对于甜蜜、亲密的人际互动的渴望会变得更加强烈

在自己的数据上训练的模型将退化为一种退化过程,在这一过程中,它们将“失去关于真实分布的信息”。首先,边缘数据将从数据集中消失,然后方差将缩小。并且模型将随着它收集的错误越来越严重而变得越来越糟糕,这些错误将在几代模型中积累,直到模型被自己的数据所污染,以至于它不再与实际建模的对象有任何相似之处。

研究人员表明,这不仅发生在通用语言模型中,还发生在各种类型的模型中。

以上是LLM的三大缺陷,你知道几个?的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它们
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

本地使用Groq Llama 3 70B的逐步指南 本地使用Groq Llama 3 70B的逐步指南 Jun 10, 2024 am 09:16 AM

译者|布加迪审校|重楼本文介绍了如何使用GroqLPU推理引擎在JanAI和VSCode中生成超快速响应。每个人都致力于构建更好的大语言模型(LLM),例如Groq专注于AI的基础设施方面。这些大模型的快速响应是确保这些大模型更快捷地响应的关键。本教程将介绍GroqLPU解析引擎以及如何在笔记本电脑上使用API和JanAI本地访问它。本文还将把它整合到VSCode中,以帮助我们生成代码、重构代码、输入文档并生成测试单元。本文将免费创建我们自己的人工智能编程助手。GroqLPU推理引擎简介Groq

加州理工华人用AI颠覆数学证明!提速5倍震惊陶哲轩,80%数学步骤全自动化 加州理工华人用AI颠覆数学证明!提速5倍震惊陶哲轩,80%数学步骤全自动化 Apr 23, 2024 pm 03:01 PM

LeanCopilot,让陶哲轩等众多数学家赞不绝口的这个形式化数学工具,又有超强进化了?就在刚刚,加州理工教授AnimaAnandkumar宣布,团队发布了LeanCopilot论文的扩展版本,并且更新了代码库。图片论文地址:https://arxiv.org/pdf/2404.12534.pdf最新实验表明,这个Copilot工具,可以自动化80%以上的数学证明步骤了!这个纪录,比以前的基线aesop还要好2.3倍。并且,和以前一样,它在MIT许可下是开源的。图片他是一位华人小哥宋沛洋,他是

从“人+RPA”到“人+生成式AI+RPA”,LLM如何影响RPA人机交互? 从“人+RPA”到“人+生成式AI+RPA”,LLM如何影响RPA人机交互? Jun 05, 2023 pm 12:30 PM

图片来源@视觉中国文|王吉伟从“人+RPA”到“人+生成式AI+RPA”,LLM如何影响RPA人机交互?换个角度,从人机交互看LLM如何影响RPA?影响程序开发与流程自动化人机交互的RPA,现在也要被LLM改变了?LLM如何影响人机交互?生成式AI怎么改变RPA人机交互?一文看明白:大模型时代来临,基于LLM的生成式AI正在快速变革RPA人机交互;生成式AI重新定义人机交互,LLM正在影响RPA软件架构变迁。如果问RPA对程序开发以及自动化有哪些贡献,其中一个答案便是它改变了人机交互(HCI,h

Plaud 推出 NotePin AI 可穿戴录音机,售价 169 美元 Plaud 推出 NotePin AI 可穿戴录音机,售价 169 美元 Aug 29, 2024 pm 02:37 PM

Plaud Note AI 录音机(亚马逊有售,售价 159 美元)背后的公司 Plaud 宣布推出一款新产品。该设备被称为 NotePin,被描述为人工智能记忆胶囊,与 Humane AI Pin 一样,它是可穿戴的。 NotePin 是

七个很酷的GenAI & LLM技术性面试问题 七个很酷的GenAI & LLM技术性面试问题 Jun 07, 2024 am 10:06 AM

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

知识图谱检索增强的GraphRAG(基于Neo4j代码实现) 知识图谱检索增强的GraphRAG(基于Neo4j代码实现) Jun 12, 2024 am 10:32 AM

图检索增强生成(GraphRAG)正逐渐流行起来,成为传统向量搜索方法的有力补充。这种方法利用图数据库的结构化特性,将数据以节点和关系的形式组织起来,从而增强检索信息的深度和上下文关联性。图在表示和存储多样化且相互关联的信息方面具有天然优势,能够轻松捕捉不同数据类型间的复杂关系和属性。而向量数据库则处理这类结构化信息时则显得力不从心,它们更专注于处理高维向量表示的非结构化数据。在RAG应用中,结合结构化化的图数据和非结构化的文本向量搜索,可以让我们同时享受两者的优势,这也是本文将要探讨的内容。构

可视化FAISS矢量空间并调整RAG参数提高结果精度 可视化FAISS矢量空间并调整RAG参数提高结果精度 Mar 01, 2024 pm 09:16 PM

随着开源大型语言模型的性能不断提高,编写和分析代码、推荐、文本摘要和问答(QA)对的性能都有了很大的提高。但是当涉及到QA时,LLM通常会在未训练数据的相关的问题上有所欠缺,很多内部文件都保存在公司内部,以确保合规性、商业秘密或隐私。当查询这些文件时,会使得LLM产生幻觉,产生不相关、捏造或不一致的内容。一种处理这一挑战的可行技术是检索增强生成(RAG)。它涉及通过引用训练数据源之外的权威知识库来增强响应的过程,以提升生成的质量和准确性。RAG系统包括一个检索系统,用于从语料库中检索相关文档片段

Google AI 为开发者发布 Gemini 1.5 Pro 和 Gemma 2 Google AI 为开发者发布 Gemini 1.5 Pro 和 Gemma 2 Jul 01, 2024 am 07:22 AM

从 Gemini 1.5 Pro 大语言模型 (LLM) 开始,Google AI 已开始为开发人员提供扩展上下文窗口和节省成本的功能。以前可通过等候名单获得完整的 200 万个代币上下文窗口

See all articles