通用的无监督学习问题解决方案:基于元算法的框架
微软研究院(Microsoft Research)和普林斯顿大学的研究人员于11月13日提出了一个通用框架,用于设计无监督学习问题的有效算法,如高斯分布和子空间聚类的混合
研究人员提出的框架,使用了一种元算法来解决噪声问题,该元算法采用下界学习计算公式的计算方法。这个框架是基于Garg、Kayal和Saha(FOCS'20)最近的工作而设计的,他们提出了这个框架,用于在没有任何噪声的情况下学习算术公式。元算法的一个关键因素是有效算法,用于解决称为“稳健向量空间分解”的新问题
研究证明,当某些矩阵具有足够大的最小非零奇异值时,元算法效果很好。“我们推测这个条件适用于我们问题的平滑实例,因此我们的框架将为平滑设置中的这些问题产生有效的算法。”
该研究的题目是《在存在噪声的情况下学习算术公式:无监督学习的通用框架和应用》(Learning Arithmetic Formulas in the Presence of Noise: A General Framework and Applications to Unsupervised Learning),于11月13日在arXiv预印平台上发布
无监督学习涉及发现数据中隐藏的模式和结构,而不使用任何标签或直接的人类监督。
在这里,研究人员考虑具有良好数学结构或从数学上明确定义的分布生成的数据。前者的一个例子是,可以根据某些相似性模式将数据点分组为有意义的集群,并且目标是找到底层集群。后者的一个例子是混合建模,它假设数据是由简洁描述的概率分布(例如高斯分布)的混合生成的,目标是从样本中学习这些分布的参数。
解决许多无监督学习问题的通用框架是矩方法,它利用数据的统计矩来推断模型的底层结构或底层参数。对于许多无监督学习问题场景,其中基础数据具有一些很好的数学结构,数据的矩是参数的明确定义的函数。启发式论证表明,相反的情况通常应该成立,即结构/分布的参数通常由数据的一些低阶矩唯一确定。在这个大方向上,主要的挑战是设计算法来(近似地)从(经验)力矩中恢复潜在的参数。
我们还希望该算法高效、耐噪声(即,即使仅近似而不是精确地知道矩,也能很好地工作),甚至是异常容忍度(即,即使少数数据点不符合底层结构/分布也能很好地工作)。但即使是该领域最简单的问题也往往是 NP 困难的,并且即使没有噪声和异常值也仍然如此。
因此,人们实际上不能指望一种具有可证明的最坏情况保证的算法。但人们可以希望算法能够保证通常运行良好,即对于随机问题实例,或者更理想的是对于以平滑方式选择的实例。因此,针对无监督学习中的每个此类问题设计了许多不同的算法,具有不同水平的效率、噪声容忍度、离群值容忍度和可证明的保证。
在这项工作中,研究人员给出了一个适用于许多此类无监督学习问题的元算法。该研究的出发点是观察到许多此类问题都归结为学习算术公式的适当子类的任务。
以上是通用的无监督学习问题解决方案:基于元算法的框架的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

01前景概要目前,难以在检测效率和检测结果之间取得适当的平衡。我们就研究出了一种用于高分辨率光学遥感图像中目标检测的增强YOLOv5算法,利用多层特征金字塔、多检测头策略和混合注意力模块来提高光学遥感图像的目标检测网络的效果。根据SIMD数据集,新算法的mAP比YOLOv5好2.2%,比YOLOX好8.48%,在检测结果和速度之间实现了更好的平衡。02背景&动机随着远感技术的快速发展,高分辨率光学远感图像已被用于描述地球表面的许多物体,包括飞机、汽车、建筑物等。目标检测在远感图像的解释中

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S
