AI产品经理必读!入门机器学习算法的小白指南
有关趣解机器学习算法的内容是下一篇文章的主题。这篇文章是为了AI产品经理同学而分享的,强烈推荐给刚刚踏入这个领域的同学们!
之前我们聊过关于人工智能的行业、产品经理的第二曲线以及两个岗位的区别,那这次我们再深入一层——趣解机器学习算法。
机器学习算法可能听起来有些高深莫测,我明白很多人包括我一开始都感到头疼,我尽量不用公式,只用案例的形式来呈现,我们从整体到局部逐步深入。
一、机器学习算法概述
首先,我们来了解一下机器学习算法的基本概念。
机器学习是一种让计算机通过数据学习和改进的方法,而机器学习算法就是实现这一目标的工具
简单来说,机器学习算法就是一套规则或者模型,它可以根据输入的数据进行学习,然后根据学习到的知识做出预测或者决策。
趣解时刻:想象一下,你正在参加一个神秘的寻宝游戏。游戏中,你需要根据一张藏宝图找到宝藏的位置。这张藏宝图就是数据,而你要做的就是通过分析这些数据找到宝藏。在现实生活中,我们可以通过机器学习算法来实现这个任务。
机器学习算法就像一个智能的寻宝机器人,它可以从大量的数据中学习规律,然后根据这些规律做出预测或决策。机器学习算法的核心目标是降低数据到结果的映射误差,从而使我们的产品更加智能、准确。
机器学习算法的应用场景非常广泛,常见的应用包括分类问题、聚类分析和回归问题。这三种应用场景在现实生活中都有各自的应用。接下来将会分别介绍它们的应用场景及实际应用
二、情境一:分类难题
1)应用场景:分类判断、标签预测、行为预测。
2)解决原理:训练已知的数据,对未知数据进行预测(包含二分类和多分类,如预测结果只有两个离散的值,如“0/1、是/否”则为二分类,如预测结果是多个离散的值,如“A/B/C”则为多分类)。
常见的分类算法有以下几种:
- 决策树:决策树是一种基于树结构的分类算法,它通过一系列的问题来对数据进行分类。
- 支持向量机:支持向量机是一种基于几何概念的分类算法,它通过找到数据空间中的最大间隔超平面来进行分类。
4)案例:防止垃圾邮件
垃圾邮件过滤是一种典型的分类问题。我们可以采用支持向量机算法来解决这一问题。通过对模型进行训练,我们能够根据邮件中的关键词、发件人等信息,准确地判断邮件是垃圾邮件还是正常邮件
三、场景二:聚类分析
1)应用场景:用户分组、用户画像
2)解决原理:聚类分析是将一组数据分成若干个类别的过程。这些类别是根据数据的内在属性或相似性来划分的。用一个词概括它的特点就是 “物以类聚”。
3)常见的聚类算法
- K 均值聚类:K 均值聚类是一种基于距离的聚类算法。它通过迭代计算数据点之间的距离,将数据点划分为 K 个类别。
- 层次聚类:层次聚类是一种基于距离的聚类算法。它通过计算数据点之间的距离,逐步将相近的数据点划分为一类。
4)案例:客户细分
对于客户细分而言,它是一种常见的聚类分析应用。我们可以运用K均值聚类算法,根据客户的消费金额、购买频率等属性,将客户分组到不同的类别中,以便进行精确的营销策略制定
四、场景三:回归问题
1)应用场景:预测未来价格、销量。
2)解决原理:根据样本的分布拟合一个图形(直线/曲线),形成方程组,输入参数,预测未来具体数值。
3)常见的回归算法
- 线性回归:线性回归是一种基于线性关系的回归算法。它通过拟合数据点的线性关系,来预测未来数据。
- 决策树回归:决策树回归是一种基于树结构的回归算法。它通过一系列的问题,来预测目标值。
- 支持向量机回归:支持向量机回归是一种基于几何概念的回归算法。它通过找到数据空间中的最大间隔超平面,来预测目标值。
4)案例股票价格预测
股票价格预测是一种典型的回归问题。我们可以使用线性回归或支持向量机回归算法,根据历史股价数据,来预测未来股价。
五、最后的话
总结一下,这篇文章的主要目的是为了介绍主流的机器学习算法。接下来,我将逐一解析三种应用场景的算法。如果你们想了解哪些算法知识,请在评论区分享,欢迎共同创造和共享
希望能为你带来一些灵感,加油!
请勿转载本文,本文由 @柳星聊产品 在人人都是产品经理上原创发布,未经许可
题图来自Unsplash,基于 CC0 协议
以上是AI产品经理必读!入门机器学习算法的小白指南的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

在机器学习和数据科学领域,模型的可解释性一直是研究者和实践者关注的焦点。随着深度学习和集成方法等复杂模型的广泛应用,理解模型的决策过程变得尤为重要。可解释人工智能(ExplainableAI|XAI)通过提高模型的透明度,帮助建立对机器学习模型的信任和信心。提高模型的透明度可以通过多种复杂模型的广泛应用等方法来实现,以及用于解释模型的决策过程。这些方法包括特征重要性分析、模型预测区间估计、局部可解释性算法等。特征重要性分析可以通过评估模型对输入特征的影响程度来解释模型的决策过程。模型预测区间估计

C++中机器学习算法面临的常见挑战包括内存管理、多线程、性能优化和可维护性。解决方案包括使用智能指针、现代线程库、SIMD指令和第三方库,并遵循代码风格指南和使用自动化工具。实践案例展示了如何利用Eigen库实现线性回归算法,有效地管理内存和使用高性能矩阵操作。

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

译者|李睿审校|重楼人工智能(AI)和机器学习(ML)模型如今变得越来越复杂,这些模型产生的输出是黑盒——无法向利益相关方解释。可解释性人工智能(XAI)致力于通过让利益相关方理解这些模型的工作方式来解决这一问题,确保他们理解这些模型实际上是如何做出决策的,并确保人工智能系统中的透明度、信任度和问责制来解决这个问题。本文探讨了各种可解释性人工智能(XAI)技术,以阐明它们的基本原理。可解释性人工智能至关重要的几个原因信任度和透明度:为了让人工智能系统被广泛接受和信任,用户需要了解决策是如何做出的

MetaFAIR联合哈佛优化大规模机器学习时产生的数据偏差,提供了新的研究框架。据所周知,大语言模型的训练常常需要数月的时间,使用数百乃至上千个GPU。以LLaMA270B模型为例,其训练总共需要1,720,320个GPU小时。由于这些工作负载的规模和复杂性,导致训练大模型存在着独特的系统性挑战。最近,许多机构在训练SOTA生成式AI模型时报告了训练过程中的不稳定情况,它们通常以损失尖峰的形式出现,比如谷歌的PaLM模型训练过程中出现了多达20次的损失尖峰。数值偏差是造成这种训练不准确性的根因,

01前景概要目前,难以在检测效率和检测结果之间取得适当的平衡。我们就研究出了一种用于高分辨率光学遥感图像中目标检测的增强YOLOv5算法,利用多层特征金字塔、多检测头策略和混合注意力模块来提高光学遥感图像的目标检测网络的效果。根据SIMD数据集,新算法的mAP比YOLOv5好2.2%,比YOLOX好8.48%,在检测结果和速度之间实现了更好的平衡。02背景&动机随着远感技术的快速发展,高分辨率光学远感图像已被用于描述地球表面的许多物体,包括飞机、汽车、建筑物等。目标检测在远感图像的解释中

在C++中,机器学习算法的实施方式包括:线性回归:用于预测连续变量,步骤包括加载数据、计算权重和偏差、更新参数和预测。逻辑回归:用于预测离散变量,流程与线性回归类似,但使用sigmoid函数进行预测。支持向量机:一种强大的分类和回归算法,涉及计算支持向量和预测标签。

Go语言在机器学习领域的应用潜力巨大,其优势在于:并发性:支持并行编程,适合机器学习任务中的计算密集型操作。高效性:垃圾收集器和语言特性确保代码高效,即使处理大型数据集。易用性:语法简洁,学习和编写机器学习应用程序容易。
