常用的回归算法及其特点在机器学习中的应用
回归是统计学中最有力的工具之一,机器学习监督学习算法分为分类算法和回归算法两种。回归算法用于连续型分布预测,可以预测连续型数据而不仅仅是离散的类别标签。
回归分析在机器学习领域得到广泛应用,例如预测商品销量、交通流量、房价以及天气情况等
回归算法是一种常用的机器学习算法,用于建立自变量X和因变量Y之间的关系。从机器学习的角度来看,它用于构建一个算法模型(函数),以实现属性X和标签Y之间的映射关系。在学习过程中,该算法试图找到最佳的参数关系,以使拟合程度最好
在回归算法中,算法(函数)的最终结果是一个连续的数据值。输入值(属性值)是一个d维度的属性/数值向量
一些常用的回归算法包括线性回归、多项式回归、决策树回归、Ridge回归、Lasso回归、ElasticNet回归等等
本文将介绍一些常见的回归算法,以及它们各自的特点
- 线性回归
- 多项式回归
- 支持向量机回归
- 决策树回归
- 随机森林回归
- LASSO 回归
- Ridge 回归
- ElasticNet 回归
- XGBoost 回归
- 局部加权线性回归
一、线性回归
线性回归通常是人们学习机器学习和数据科学的第一个算法。线性回归是一种线性模型,它假设输入变量 (X) 和单个输出变量 (y) 之间存在线性关系。一般来说,有两种情况:
单变量线性回归是一种建模方法,用于分析单个输入变量(即单个特征变量)与单个输出变量之间的关系
多变量线性回归(也称为多元线性回归):它对多个输入变量(多个特征变量)和单个输出变量之间的关系进行建模。
关于线性回归的几个关键点:
- 快速且易于建模
- 当要建模的关系不是非常复杂并且您没有大量数据时,它特别有用。
- 非常直观的理解和解释。
- 它对异常值非常敏感。
二、多项式回归
当我们想要为非线性可分数据创建模型时,多项式回归是最受欢迎的选择之一。它类似于线性回归,但使用变量 X 和 y 之间的关系来找到绘制适合数据点的曲线的最佳方法。
关于多项式回归的几个关键点:
- 能够对非线性可分数据进行建模;线性回归不能做到这一点。一般来说,它更加灵活,可以对一些相当复杂的关系进行建模。
- 完全控制特征变量的建模(要设置的指数)。
- 需要精心设计。需要一些数据知识才能选择最佳指数。
- 如果指数选择不当,则容易过度拟合。
三、支持向量机回归
支持向量机在分类问题中是众所周知的。SVM 在回归中的使用称为支持向量回归(SVR)。Scikit-learn在 SVR()中内置了这种方法。
关于支持向量回归的几个关键点:
- 它对异常值具有鲁棒性,并且在高维空间中有效
- 它具有出色的泛化能力(能够正确适应新的、以前看不见的数据)
- 如果特征数量远大于样本数量,则容易过拟合
四、决策树回归
决策树是一种用于分类和回归的非参数监督学习方法。目标是创建一个模型,通过学习从数据特征推断出的简单决策规则来预测目标变量的值。一棵树可以看作是一个分段常数近似。
关于决策树的几个关键点:
- 易于理解和解释。树可以可视化。
- 适用于分类值和连续值
- 使用 DT(即预测数据)的成本与用于训练树的数据点数量成对数
- 决策树的预测既不平滑也不连续(如上图所示为分段常数近似)
五、随机森林回归
随机森林回归与决策树回归基本上非常相似。它是一种元估计器,可以在数据集的各个子样本上拟合多个决策树,并通过平均来提高预测准确性和控制过拟合
随机森林回归器在回归问题中的表现可能会优于决策树,也可能不如决策树(尽管在分类问题中通常更好),这是由于树构造算法本身存在微妙的过拟合和欠拟合的权衡
关于随机森林回归的几点:
- 减少决策树中的过度拟合并提高准确性。
- 它也适用于分类值和连续值。
- 需要大量计算能力和资源,因为它适合许多决策树来组合它们的输出。
六、LASSO 回归
LASSO回归是一种变体的收缩线性回归。收缩是将数据值收缩到中心点作为平均值的过程。这种回归类型非常适用于具有严重多重共线性(特征之间高度相关)的模型
关于 Lasso 回归的几点:
- 它最常用于消除自动变量和选择特征。
- 它非常适合显示重度多重共线性(特征相互之间高度相关)的模型。
- LASSO 回归利用 L1 正则化
- LASSO 回归被认为比 Ridge 更好,因为它只选择了一些特征并将其他特征的系数降低到零。
七、岭回归
岭回归(Ridge regression)和LASSO回归非常相似,因为这两种技术都采用了收缩方法。Ridge和LASSO回归都非常适用于具有严重多重共线性问题(即特征之间高度相关)的模型。它们之间的主要区别在于Ridge使用L2正则化,这意味着没有一个系数会像LASSO回归中那样变为零(而是接近零)
关于岭回归的几点:
- 它非常适合显示重度多重共线性(特征相互之间高度相关)的模型。
- 岭回归使用 L2 正则化。贡献较小的特征将具有接近于零的系数。
- 由于 L2 正则化的性质,岭回归被认为比 LASSO 更差。
八、ElasticNet 回归
ElasticNet 是另一个使用 L1 和 L2 正则化训练的线性回归模型。它是 Lasso 和 Ridge 回归技术的混合体,因此它也非常适合显示重度多重共线性(特征相互之间高度相关)的模型。
在权衡Lasso和Ridge之间时,一个实际的优势是Elastic-Net可以在旋转下继承Ridge的一些稳定性
九、XGBoost 回归
XGBoost 是梯度提升算法的一种高效且有效的实现。梯度提升是一类可用于分类或回归问题的集成机器学习算法
XGBoost是一个开源库,最初由陈天奇在他于2016年的论文《XGBoost: A Scalable Tree Boosting System》中开发。该算法的设计旨在具有高效和效率的计算能力
关于 XGBoost 的几点:
- XGBoost 在稀疏和非结构化数据上表现不佳。
- 该算法被设计为计算效率和高效,但是对于大型数据集的训练时间仍然相当长。
- 它对异常值很敏感。
十、局部加权线性回归
在局部加权线性回归(Local Weights Linear Regression)中,我们也是在进行线性回归。然而,与普通线性回归不同的是,局部加权线性回归是一种局部线性回归方法。它通过引入权值(核函数),在进行预测时,只使用与测试点相近的部分样本来计算回归系数。普通线性回归则是全局线性回归,它使用全部的样本来计算回归系数
优缺点 & 适用场景
优点就是通过核函数加权来预防欠拟合,缺点也很明显K需要调试。当多元线性回归过拟合的时候,可以尝试高斯核局部加权来预防过拟合。
十一、贝叶斯岭回归
使用贝叶斯推断方法求解的线性回归模型被称为贝叶斯线性回归
贝叶斯线性回归是一种将线性模型的参数视为随机变量的方法,并通过先验计算后验。贝叶斯线性回归可以通过数值方法求解,在特定条件下也可以得到解析形式的后验或相关统计量
贝叶斯线性回归具有贝叶斯统计模型的基本性质,可以求解权重系数的概率密度函数,进行在线学习以及基于贝叶斯因子(Bayes factor)的模型假设检验
优缺点 & 适用场景
贝叶斯回归的优点在于其具有数据自适应能力,可以重复利用数据并防止过度拟合。在估计过程中,可以引入正则化项,例如在贝叶斯线性回归中引入L2正则化项,就可以实现贝叶斯岭回归
缺点就是学习过程开销太大。当特征数在10个以为,可以尝试贝叶斯回归。
以上是常用的回归算法及其特点在机器学习中的应用的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

图像标注是将标签或描述性信息与图像相关联的过程,以赋予图像内容更深层次的含义和解释。这一过程对于机器学习至关重要,它有助于训练视觉模型以更准确地识别图像中的各个元素。通过为图像添加标注,使得计算机能够理解图像背后的语义和上下文,从而提高对图像内容的理解和分析能力。图像标注的应用范围广泛,涵盖了许多领域,如计算机视觉、自然语言处理和图视觉模型具有广泛的应用领域,例如,辅助车辆识别道路上的障碍物,帮助疾病的检测和诊断通过医学图像识别。本文主要推荐一些较好的开源免费的图像标注工具。1.Makesens

在机器学习和数据科学领域,模型的可解释性一直是研究者和实践者关注的焦点。随着深度学习和集成方法等复杂模型的广泛应用,理解模型的决策过程变得尤为重要。可解释人工智能(ExplainableAI|XAI)通过提高模型的透明度,帮助建立对机器学习模型的信任和信心。提高模型的透明度可以通过多种复杂模型的广泛应用等方法来实现,以及用于解释模型的决策过程。这些方法包括特征重要性分析、模型预测区间估计、局部可解释性算法等。特征重要性分析可以通过评估模型对输入特征的影响程度来解释模型的决策过程。模型预测区间估计

本文将介绍如何通过学习曲线来有效识别机器学习模型中的过拟合和欠拟合。欠拟合和过拟合1、过拟合如果一个模型对数据进行了过度训练,以至于它从中学习了噪声,那么这个模型就被称为过拟合。过拟合模型非常完美地学习了每一个例子,所以它会错误地分类一个看不见的/新的例子。对于一个过拟合的模型,我们会得到一个完美/接近完美的训练集分数和一个糟糕的验证集/测试分数。略有修改:"过拟合的原因:用一个复杂的模型来解决一个简单的问题,从数据中提取噪声。因为小数据集作为训练集可能无法代表所有数据的正确表示。"2、欠拟合如

通俗来说,机器学习模型是一种数学函数,它能够将输入数据映射到预测输出。更具体地说,机器学习模型就是一种通过学习训练数据,来调整模型参数,以最小化预测输出与真实标签之间的误差的数学函数。在机器学习中存在多种模型,例如逻辑回归模型、决策树模型、支持向量机模型等,每一种模型都有其适用的数据类型和问题类型。同时,不同模型之间存在着许多共性,或者说有一条隐藏的模型演化的路径。将联结主义的感知机为例,通过增加感知机的隐藏层数量,我们可以将其转化为深度神经网络。而对感知机加入核函数的话就可以转化为SVM。这一

20世纪50年代,人工智能(AI)诞生。当时研究人员发现机器可以执行类似人类的任务,例如思考。后来,在20世纪60年代,美国国防部资助了人工智能,并建立了实验室进行进一步开发。研究人员发现人工智能在许多领域都有用武之地,例如太空探索和极端环境中的生存。太空探索是对宇宙的研究,宇宙涵盖了地球以外的整个宇宙空间。太空被归类为极端环境,因为它的条件与地球不同。要在太空中生存,必须考虑许多因素,并采取预防措施。科学家和研究人员认为,探索太空并了解一切事物的现状有助于理解宇宙的运作方式,并为潜在的环境危机

C++中机器学习算法面临的常见挑战包括内存管理、多线程、性能优化和可维护性。解决方案包括使用智能指针、现代线程库、SIMD指令和第三方库,并遵循代码风格指南和使用自动化工具。实践案例展示了如何利用Eigen库实现线性回归算法,有效地管理内存和使用高性能矩阵操作。

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

MetaFAIR联合哈佛优化大规模机器学习时产生的数据偏差,提供了新的研究框架。据所周知,大语言模型的训练常常需要数月的时间,使用数百乃至上千个GPU。以LLaMA270B模型为例,其训练总共需要1,720,320个GPU小时。由于这些工作负载的规模和复杂性,导致训练大模型存在着独特的系统性挑战。最近,许多机构在训练SOTA生成式AI模型时报告了训练过程中的不稳定情况,它们通常以损失尖峰的形式出现,比如谷歌的PaLM模型训练过程中出现了多达20次的损失尖峰。数值偏差是造成这种训练不准确性的根因,
