目录
LLM运行时(LLM Runtime)
使用基于Transformer的API,在CPU上实现LLM高效推理
性能测试
准确性测试
△表3.INT4与FP32准确性对比
更先进的功能:满足LLM更多场景应用需求
Streaming LLM
结论与展望
特别致谢
首页 科技周边 人工智能 使用工具包可将大型模型推理性能提升40倍

使用工具包可将大型模型推理性能提升40倍

Nov 30, 2023 pm 08:26 PM
数据 训练

英特尔® Extension for Transformer是什么?

英特尔® Extension for Transformers[1]是英特尔推出的一个创新工具包,可基于英特尔® 架构平台,尤其是第四代英特尔® 至强® 可扩展处理器(代号Sapphire Rapids[2],SPR)显着加速基于Transformer的大语言模型(Large Language Model,LLM)。其主要特性包括:

  • 通过扩展Hugging Face transformers API[3]和利用英特尔® Neural Compressor[4],为用户提供无缝的模型压缩体验;
  • 提供采用低位量化内核(NeurIPS 2023:在CPU上实现高效LLM推理[5])的LLM推理运行时,支持Falcon、LLaMA、MPT、Llama2、 BLOOM、OPT、ChatGLM2、GPT-J-6B、Baichuan-13B-Base、Baichuan2-13B-Base、 Qwen-7B、Qwen-14B和Dolly-v2-3B等常见的LLM[6];
  • 先进的压缩感知运行时[7](NeurIPS 2022:在CPU上实现快速蒸馏和QuaLA-MiniLM:量化长度自适应MiniLM;NeurIPS 2021:一次剪枝,一劳永逸:对预训练语言模型进行稀疏/剪枝)。

本文将重点介绍其中的LLM推理运行时(简称为“LLM运行时”),以及如何利用基于Transformer的API在英特尔® 至强® 可扩展处理器上实现更高效的LLM推理和如何应对LLM在聊天场景中的应用难题。

LLM运行时(LLM Runtime)

英特尔® Extension for Transformers提供的LLM Runtime[8]是一种轻量级但高效的LLM推理运行时,其灵感源于GGML[9],且与llama.cpp[10]兼容,具有如下特性:

  • 内核已针对英特尔® 至强® CPU内置的多种AI加速技术(如AMX、VNNI)以及AVX512F和AVX2指令集进行了优化;
  • 可提供更多量化选择,例如:不同的粒度(按通道或按组)、不同的组大小(如:32/128);
  • 拥有更优的KV缓存访问以及内存分配策略;
  • 具备张量并行化功能,可助力在多路系统中进行分布式推理。

LLM Runtime的简化架构图如下:

使用工具包可将大型模型推理性能提升40倍

需要进行改写的内容是:△图1.英特尔® Extension for Transformers的LLM Runtime简化架构图

使用基于Transformer的API,在CPU上实现LLM高效推理

只需不到9行代码,即可让您在CPU上实现更出色的LLM推理性能。用户可以轻松地启用与Transformer类似的API来进行量化和推理。只需将 ‘load_in_4bit’设为true,然后从HuggingFace URL或本地路径输入模型即可。下方提供了启用仅限权重的(weight-only)INT4量化的示例代码:

from transformers import AutoTokenizer, TextStreamerfrom intel_extension_for_transformers.transformers import AutoModelForCausalLMmodel_name = "Intel/neural-chat-7b-v3-1” prompt = "Once upon a time, there existed a little girl,"tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)inputs = tokenizer(prompt, return_tensors="pt").input_idsstreamer = TextStreamer(tokenizer)model = AutoModelForCausalLM.from_pretrained(model_name, load_in_4bit=True)outputs = model.generate(inputs, streamer=streamer, max_new_tokens=300)
登录后复制

默认设置为:将权重存储为4位,以8位进行计算。但也支持不同计算数据类型(dtype)和权重数据类型组合,用户可以按需修改设置。下方提供了如何使用这一功能的示例代码:

from transformers import AutoTokenizer, TextStreamerfrom intel_extension_for_transformers.transformers import AutoModelForCausalLM, WeightOnlyQuantConfigmodel_name = "Intel/neural-chat-7b-v3-1” prompt = "Once upon a time, there existed a little girl,"woq_config = WeightOnlyQuantConfig(compute_dtype="int8", weight_dtype="int4")tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)inputs = tokenizer(prompt, return_tensors="pt").input_idsstreamer = TextStreamer(tokenizer)model = AutoModelForCausalLM.from_pretrained(model_name,quantization_cnotallow=woq_config)outputs = model.generate(inputs, streamer=streamer, max_new_tokens=300)
登录后复制

性能测试

经过持续努力,上述优化方案的INT4性能得到了显着提升。本文在搭载英特尔® 至强® 铂金8480+的系统上与llama.cpp进行了性能比较;系统配置详情如下:@3.8GHz,56核/路,启用超线程,启用睿频,总内存256 GB (16 x 16 GB DDR5 4800 MT/s [4800 MT/s]),BIOS 3A14.TEL2P1,微代码0x2b0001b0,CentOS Stream 8。

推理性能测试结果见下表,其中输入大小为32,输出大小为32,beam为1

使用工具包可将大型模型推理性能提升40倍

△表1.LLM Runtime与llama.cpp推理性能比较(输入大小=32,输出大小=32,beam=1)

输入大小为1024、输出大小为32、beam为1时的推理性能的测试结果,详见下表:

使用工具包可将大型模型推理性能提升40倍

△表2.LLM Runtime与llama.cpp推理性能比较(输入大小=1024,输出大小=32,beam=1)

根据上表2可见:与同样运行在第四代英特尔® 至强® 可扩展处理器上的llama.cpp相比,无论是首个token还是下一个token,LLM Runtime都能显着降低时延,且首个token和下一个token的推理速度分别提升多达40 倍[a](Baichuan-13B,输入为1024)和2.68倍[b](MPT-7B,输入为1024) 。 llama.cpp的测试采用的是默认代码库[10]。

而综合表1和表2的测试结果,可得:与同样运行在第四代英特尔® 至强® 可扩展处理器上的llama.cpp相比,LLM Runtime能显着提升诸多常见LLM的整体性能:在输入大小为1024时,实现3.58到21.5倍的提升;在输入大小为32时,实现1.76到3.43倍的提升[c]

准确性测试

英特尔® Extension for Transformers可利用英特尔® Neural Compressor中的SignRound[11]、RTN和GPTQ[12]等量化方法,并使用lambada_openai、piqa、winogrande和hellaswag数据集验证了INT4 推理准确性。下表是测试结果平均值与FP32准确性的比较。

使用工具包可将大型模型推理性能提升40倍
△表3.INT4与FP32准确性对比

从上表3可以看出,多个模型基于LLM Runtime进行的INT4推理准确性损失微小,几乎可以忽略不记。我们验证了很多模型,但由于篇幅限制此处仅罗列了部分内容。如您欲了解更多信息或细节,请访问此链接:https://medium.com/@NeuralCompressor/llm-performance-of-intel-extension-for-transformers-f7d061556176

更先进的功能:满足LLM更多场景应用需求

同时,LLM Runtime[8]还具备双路CPU的张量并行化功能,是较早具备此类功能的产品之一。未来,还会进一步支持双节点。

然而,LLM Runtime的优势不仅在于其更出色的性能和准确性,我们还投入了大量精力来增强其在聊天应用场景中的功能,并解决了LLM在聊天场景中可能遇到的以下应用难题:

  1. 对话不仅关乎LLM推理,对话历史也很有用。
  2. 输出长度有限:LLM模型预训练主要基于有限的序列长度。因此,当序列长度超出预训练时使用的注意力窗口大小时,其准确性便会降低。
  3. 效率低下:在解码阶段,基于Transformer的LLM会存储所有先前生成的token的键值状态(KV),从而导致内存使用过度,解码时延增加。

关于第一个问题,LLM Runtime的对话功能通过纳入更多对话历史数据以及生成更多输出加以解决,而llama.cpp目前尚未能很好地应对这一问题。

关于第二和第三个问题,我们将流式LLM(Steaming LLM)集成到英特尔® Extension for Transformers中,从而能显着优化内存使用并降低推理时延。

Streaming LLM

与传统KV缓存算法不同,我们的方法结合了注意力汇聚(Attention Sink)(4个初始token)以提升注意力计算的稳定性,并借助滚动KV缓存保留最新的token,这对语言建模至关重要。该设计具有强大的灵活性,可无缝集成到能够利用旋转位置编码RoPE和相对位置编码ALiBi的自回归语言模型中。

使用工具包可将大型模型推理性能提升40倍

需要重写的内容是:△ 图2. 使用注意力下沉实现高效流式语言模型的Steam LLM的KV缓存(图片来源:[13])

而且,与llama.cpp不同,这个优化方案还新增了“n_keep”和“n_discard”等参数,以增强Streaming LLM策略。用户可以使用“n_keep”参数指定要保留在KV缓存中的token数量,并使用“n_discard”参数确定要在已生成的token中舍弃的数量。为了更好地平衡性能和准确性,系统默认在KV缓存中舍弃最新token数量的一半

同时,为进一步提高性能,我们还将Streaming LLM添加到了MHA融合模式中。如果模型是采用旋转位置编码(RoPE)来实现位置嵌入,那么只需针对现有的K-Cache应用“移位运算(shift operation)”,即可避免对先前生成的、未被舍弃的token进行重复计算。这一方法不仅充分利用了长文本生成时的完整上下文大小,还能在KV缓存上下文完全被填满前不产生额外开销。

“shift operation”依赖于旋转的交换性和关联性,或复数乘法。例如:如果某个token的K-张量初始放置位置为m并且旋转了θfor i ∈ [0,d/2),那么当它需要移动到m-1这个位置时,则可以旋转回到(-1)×θfor i ∈ [0,d/2)。这正是每次舍弃n_discard个token的缓存时发生的事情,而此时剩余的每个token都需要“移动”n_discard个位置。下图以“n_keep=4、n_ctx=16、n_discard=1”为例,展示了这一过程。

使用工具包可将大型模型推理性能提升40倍

△图3.Ring-Buffer KV-Cache和Shift-RoPE工作原理

需要注意的是:融合注意力层无需了解上述过程。如果对K-cache和V-cache进行相同的洗牌,注意力层会输出几乎相同的结果(可能存在因浮点误差导致的微小差异)

您可以使用下面的代码来启动Streaming LLM:

from transformers import AutoTokenizer, TextStreamer from intel_extension_for_transformers.transformers import AutoModelForCausalLM, WeightOnlyQuantConfig model_name = "Intel/neural-chat-7b-v1-1" # Hugging Face model_id or local model woq_config = WeightOnlyQuantConfig(compute_dtype="int8", weight_dtype="int4") prompt = "Once upon a time, a little girl"tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) inputs = tokenizer(prompt, return_tensors="pt").input_ids streamer = TextStreamer(tokenizer)model = AutoModelForCausalLM.from_pretrained(model_name, quantization_cnotallow=woq_config, trust_remote_code=True) # Recommend n_keep=4 to do attention sinks (four initial tokens) and n_discard=-1 to drop half rencetly tokens when meet length threshold outputs = model.generate(inputs, streamer=streamer, max_new_tokens=300, ctx_size=100, n_keep=4, n_discard=-1)
登录后复制

结论与展望

本文基于上述实践经验,提供了一个在英特尔® 至强® 可扩展处理器上实现高效的低位(INT4)LLM推理的解决方案,并且在一系列常见LLM上验证了其通用性以及展现了其相对于其他基于CPU的开源解决方案的性能优势。未来,我们还将进一步提升CPU张量库和跨节点并行性能。

欢迎您试用英特尔® Extension for Transformers[1],并在英特尔® 平台上更高效地运行LLM推理!也欢迎您向代码仓库(repository)提交修改请求 (pull request)、问题或疑问。期待您的反馈!

特别致谢

在此致谢为此篇文章做出贡献的英特尔公司人工智能资深经理张瀚文及工程师许震中、余振滔、刘振卫、丁艺、王哲、刘宇澄。

[a]根据表2 Baichuan-13B的首个token测试结果计算而得。
[b]根据表2 MPT-7B的下一个token测试结果计算而得。
[c]当输入大小为1024时,整体性能=首个token性能+1023下一个token性能;当输入大小为32时,整体性能=首个token性能+31下一个token性能。

以上是使用工具包可将大型模型推理性能提升40倍的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

使用ddrescue在Linux上恢复数据 使用ddrescue在Linux上恢复数据 Mar 20, 2024 pm 01:37 PM

DDREASE是一种用于从文件或块设备(如硬盘、SSD、RAM磁盘、CD、DVD和USB存储设备)恢复数据的工具。它将数据从一个块设备复制到另一个块设备,留下损坏的数据块,只移动好的数据块。ddreasue是一种强大的恢复工具,完全自动化,因为它在恢复操作期间不需要任何干扰。此外,由于有了ddasue地图文件,它可以随时停止和恢复。DDREASE的其他主要功能如下:它不会覆盖恢复的数据,但会在迭代恢复的情况下填补空白。但是,如果指示工具显式执行此操作,则可以将其截断。将数据从多个文件或块恢复到单

开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计! 开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计! Apr 03, 2024 pm 12:04 PM

0.这篇文章干了啥?提出了DepthFM:一个多功能且快速的最先进的生成式单目深度估计模型。除了传统的深度估计任务外,DepthFM还展示了在深度修复等下游任务中的最先进能力。DepthFM效率高,可以在少数推理步骤内合成深度图。下面一起来阅读一下这项工作~1.论文信息标题:DepthFM:FastMonocularDepthEstimationwithFlowMatching作者:MingGui,JohannesS.Fischer,UlrichPrestel,PingchuanMa,Dmytr

谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择 谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择 Apr 01, 2024 pm 07:46 PM

谷歌力推的JAX在最近的基准测试中性能已经超过Pytorch和TensorFlow,7项指标排名第一。而且测试并不是在JAX性能表现最好的TPU上完成的。虽然现在在开发者中,Pytorch依然比Tensorflow更受欢迎。但未来,也许有更多的大模型会基于JAX平台进行训练和运行。模型最近,Keras团队为三个后端(TensorFlow、JAX、PyTorch)与原生PyTorch实现以及搭配TensorFlow的Keras2进行了基准测试。首先,他们为生成式和非生成式人工智能任务选择了一组主流

你好,电动Atlas!波士顿动力机器人复活,180度诡异动作吓坏马斯克 你好,电动Atlas!波士顿动力机器人复活,180度诡异动作吓坏马斯克 Apr 18, 2024 pm 07:58 PM

波士顿动力Atlas,正式进入电动机器人时代!昨天,液压Atlas刚刚「含泪」退出历史舞台,今天波士顿动力就宣布:电动Atlas上岗。看来,在商用人形机器人领域,波士顿动力是下定决心要和特斯拉硬刚一把了。新视频放出后,短短十几小时内,就已经有一百多万观看。旧人离去,新角色登场,这是历史的必然。毫无疑问,今年是人形机器人的爆发年。网友锐评:机器人的进步,让今年看起来像人类的开幕式动作、自由度远超人类,但这真不是恐怖片?视频一开始,Atlas平静地躺在地上,看起来应该是仰面朝天。接下来,让人惊掉下巴

iPhone上的蜂窝数据互联网速度慢:修复 iPhone上的蜂窝数据互联网速度慢:修复 May 03, 2024 pm 09:01 PM

在iPhone上面临滞后,缓慢的移动数据连接?通常,手机上蜂窝互联网的强度取决于几个因素,例如区域、蜂窝网络类型、漫游类型等。您可以采取一些措施来获得更快、更可靠的蜂窝互联网连接。修复1–强制重启iPhone有时,强制重启设备只会重置许多内容,包括蜂窝网络连接。步骤1–只需按一次音量调高键并松开即可。接下来,按降低音量键并再次释放它。步骤2–该过程的下一部分是按住右侧的按钮。让iPhone完成重启。启用蜂窝数据并检查网络速度。再次检查修复2–更改数据模式虽然5G提供了更好的网络速度,但在信号较弱

超级智能体生命力觉醒!可自我更新的AI来了,妈妈再也不用担心数据瓶颈难题 超级智能体生命力觉醒!可自我更新的AI来了,妈妈再也不用担心数据瓶颈难题 Apr 29, 2024 pm 06:55 PM

哭死啊,全球狂炼大模型,一互联网的数据不够用,根本不够用。训练模型搞得跟《饥饿游戏》似的,全球AI研究者,都在苦恼怎么才能喂饱这群数据大胃王。尤其在多模态任务中,这一问题尤为突出。一筹莫展之际,来自人大系的初创团队,用自家的新模型,率先在国内把“模型生成数据自己喂自己”变成了现实。而且还是理解侧和生成侧双管齐下,两侧都能生成高质量、多模态的新数据,对模型本身进行数据反哺。模型是啥?中关村论坛上刚刚露面的多模态大模型Awaker1.0。团队是谁?智子引擎。由人大高瓴人工智能学院博士生高一钊创立,高

快手版Sora「可灵」开放测试:生成超120s视频,更懂物理,复杂运动也能精准建模 快手版Sora「可灵」开放测试:生成超120s视频,更懂物理,复杂运动也能精准建模 Jun 11, 2024 am 09:51 AM

什么?疯狂动物城被国产AI搬进现实了?与视频一同曝光的,是一款名为「可灵」全新国产视频生成大模型。Sora利用了相似的技术路线,结合多项自研技术创新,生产的视频不仅运动幅度大且合理,还能模拟物理世界特性,具备强大的概念组合能力和想象力。数据上看,可灵支持生成长达2分钟的30fps的超长视频,分辨率高达1080p,且支持多种宽高比。另外再划个重点,可灵不是实验室放出的Demo或者视频结果演示,而是短视频领域头部玩家快手推出的产品级应用。而且主打一个务实,不开空头支票、发布即上线,可灵大模型已在快影

特斯拉机器人进厂打工,马斯克:手的自由度今年将达到22个! 特斯拉机器人进厂打工,马斯克:手的自由度今年将达到22个! May 06, 2024 pm 04:13 PM

特斯拉机器人Optimus最新视频出炉,已经可以在厂子里打工了。正常速度下,它分拣电池(特斯拉的4680电池)是这样的:官方还放出了20倍速下的样子——在小小的“工位”上,拣啊拣啊拣:这次放出的视频亮点之一在于Optimus在厂子里完成这项工作,是完全自主的,全程没有人为的干预。并且在Optimus的视角之下,它还可以把放歪了的电池重新捡起来放置,主打一个自动纠错:对于Optimus的手,英伟达科学家JimFan给出了高度的评价:Optimus的手是全球五指机器人里最灵巧的之一。它的手不仅有触觉

See all articles