对AI网络防御需求凸显,高级勒索软件活动增加了压力
Deep Instinct的首席信息官卡尔·弗罗吉特在一次采访中提到了2024年预算的关键重点将转向勒索软件防护技术。他预计人工智能,尤其是深度学习,将在更大程度上融入业务流程,实现工作流程的自动化,并改善工作场所体验
勒索软件攻击的新趋势是什么,企业应该如何使用AI技术为它们做好准备?
最新数据来自Deep Instinct,发现到2023年勒索软件受害者总数将迅速增加,令人惊讶的是,2023年上半年勒索软件攻击的受害者数量比2022年全年还要多。除了媒体报道这一上升趋势外,像FS-ISAC这样备受尊敬的非营利组织也承认了这一趋势存在的问题
这表明我们目前所采取的方法在应对不断变化的威胁格局上已经失败了。勒索软件的出现改变了我们原本的“检测并响应”方法,而这种方法已经无法跟上新变体的发展速度。因此,我们看到受害者数量不断增加的情况。为了应对这一挑战,我们需要再次转变我们的策略
攻击者的技术已经发生了变化,勒索软件攻击正在作为大规模活动进行,同时影响到相当数量的受害者,就像我们今年看到的Zimbra和MOVEit漏洞攻击一样。随着坏人对AI的快速采用,我们将看到恶意软件的持续发展,这种软件比以往任何时候都更加复杂。
AI的高级能力使得我们现在能够避免勒索软件和其他网络攻击,而不仅仅是检测和响应它们。现有证据表明,应对已经不再足够好,我们需要重新回到预防第一的理念,利用AI在基础设施、存储和业务应用程序中嵌入预防能力,这是企业真正保护自己免受高级形式的勒索软件和威胁的唯一途径,尤其是通过利用更复杂的AI形式来对抗AI威胁,例如深度学习
在识别和缓解勒索软件威胁方面,深度学习与标准机器学习模型有何不同?
并不是所有的AI都是平等的,在比较深度学习和基于机器学习的解决方案时,这一点尤其明显。大多数网络安全工具都利用机器学习模型,但这些模型在预防威胁方面存在一些缺陷。例如,这些产品只是利用有限的可用数据子集(通常为2%-5%)进行训练,对于未知威胁只能提供50%-70%的准确率,并且会产生许多误报。机器学习解决方案还需要大量的人工干预,并且只在小数据集上进行训练,这就使得它们暴露在人类的偏见和错误中
数字图书馆建立在神经网络之上,相较于其他方式,它的“大脑”能够不断地通过原始数据进行自我训练。由于深度学习模型掌握了恶意文件的构建要素,因此可实施和部署基于预测性预防的安全程序,以预测未来的恶意行为,检测和预防未知威胁、勒索软件和零日攻击
对于一家企业及其网络安全运营来说,使用基于数字图书馆的解决方案具有显著优势。首先,相比于基于机器学习的解决方案,该方案对已知和未知恶意软件的持续检测效率极高,同时假阳性率极低。深度学习只需每年更新一到两次即可保持这种效果,并且由于其独立运行的特点,无需持续的云搜索或英特尔共享,因此具有快速和隐私友好的特点,无需进行任何云分析
深度学习技术如何减少误报,对企业成本节约的潜在影响是什么?
安全运营中心(SOC)团队被需要调查的警报和潜在安全威胁淹没,使用传统的机器学习工具,例如传统的反病毒解决方案,团队很难确定哪些警报真正值得调查,而不是噪音。造成这种情况的原因有很多,但“检测并响应”的理念意味着你必须收集大量数据,这些数据的存储和维护成本很高,而且正如任何SOC成员所说的那样,假阳性率非常高。
这就影响了SOC的有效性——他们不能保护企业,同时,它还对维持SOC团队的能力产生了其他影响。处理误报警报的数量和时间密集性正在损害安全团队的心理健康,超过一半的SOC团队表示,由于“人员和资源限制”,他们的压力水平在过去12个月里有所增加。如果没有适当的技术,已经在为人才限制而苦苦挣扎的SOC团队被迫专注于平凡的监测任务。
一个得到深度学习支持的解决方案成功地解决了这个问题,它具有非常高的准确性和极低的误警率,这使得SOC团队有更多的时间专注于真正可行的警报,并以更高效的方式更快地定位威胁。通过将时间花在真正的威胁上,他们可以优化威胁态势,并参与更主动的威胁搜索,从而显着提高企业的风险态势
随着企业开始为2024年编制预算,他们应该优先投资于勒索软件预防技术吗?
随着62%的首席执行官确认勒索软件是他们过去一年最担忧的问题,预计到2024年,企业将调整他们的预算,增加对预防技术的投资,以防止勒索软件、已知和未知的威胁以及其他恶意软件的侵害
该行业一直依赖过时和被动的解决方案,例如终端检测和响应(EDR),来提供保护。虽然从后续处理的角度来看,EDR工具仍然有用,但是,如果企业只投资于这些工具,他们就是在“假设违规”,并希望补救工作能够成功。显然,由于威胁格局的变化,这种方法每年都在迅速失败。就像Signature解决方案最终失败了,我们转向了EDR一样,EDR也处于同样的临界点。因此,整个行业需要采取更先进,更主动的方法来保障安全
事实上,IDC最近预测,随着企业寻求更好的EDR功能并倾向于提供更有效的产品,端点保护将出现某种形式的重生。我们正处于EDR蜜月期后,预测性预防全面生效,在攻击进入你的网络之前阻止攻击。
应对日益复杂的人工智能威胁的唯一方法是从“假设破坏”的心态转变为积极、预防性的网络安全方法。安全团队不能仅仅依靠过时的工具来应对人工智能的挑战,相反,企业应当采用基于深度学习模型的原生网络安全解决方案,以减缓不断演变的人工智能威胁的数量和速度。到2024年,我们将会看到企业在预算中留出空间,将先进的人工智能技术整合到他们的网络安全战略中,以增强安全弹性并降低成功攻击的可能性
你如何预测AI,特别是深度学习模型,在未来一年将更多地融入业务流程?
2023年,我们看到AI突然出现,2024年,AI将成为商业规划、流程和决策的一部分,例如,这包括自动化工作流程、优化流程,以及对我们在AI助手中看到的警报进行优先排序,这些附加功能并不能阻止,而只是在此刻起到帮助作用。
此外,随着AI变得完全整合,年轻一代将不会在故障排除、停电和安全事件等工作场所任务方面拥有相同的动手体验,因为这些任务中的大部分将由AI自动化。对于领导者来说,问题将变成:当学习劳动力基础知识的机会被剥夺时,我们如何继续培养和塑造人们的技能和职业生涯?我预计这个问题将在明年年底前得到答复。
以上是对AI网络防御需求凸显,高级勒索软件活动增加了压力的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

本站8月1日消息,SK海力士今天(8月1日)发布博文,宣布将出席8月6日至8日,在美国加利福尼亚州圣克拉拉举行的全球半导体存储器峰会FMS2024,展示诸多新一代产品。未来存储器和存储峰会(FutureMemoryandStorage)简介前身是主要面向NAND供应商的闪存峰会(FlashMemorySummit),在人工智能技术日益受到关注的背景下,今年重新命名为未来存储器和存储峰会(FutureMemoryandStorage),以邀请DRAM和存储供应商等更多参与者。新产品SK海力士去年在
