GTA6预告片播放量超过10亿,AI巨头也能迅速进入GTA匪帮角色
GTA 新出的游戏预告片看了吗?据说,这个预告片已经破了三项吉尼斯世界纪录,观看次数已经破亿。
如果告诉你,三位AI巨头也能在《侠盗猎车手》游戏中扮演角色,你还能分辨出他们吗?
AI 三巨头:Yann LeCun、Geoffrey Hinton 和 Yoshua Bengio。
这张合照采用了腾讯的 FaceStudio AI 模型合成,呈现了 GTA 风格的效果。这个 AI 模型的独特之处在于其出色的人物辨识度,将广泛应用的「AI 写真」技术推向了更高的水平
在人工智能技术迅速发展的今天,AI 写真照已经成为 AI 技术应用的一个热门方向。在 AI + 图像应用领域,妙鸭相机等 AI 写真产品已经展示了巨大的潜力和受欢迎程度。妙鸭相机的推出仅仅几周就在社交媒体上引起了广泛关注,其迅猛的增长速度凸显了这一市场的巨大潜力。尽管如此,众多 AI 写真产品在技术上还存在一定的局限性,例如用户需要上传多张差异较大的照片,并且需要等待较长时间才能获得合成效果,这无疑影响了用户体验。
在这个由人工智能主导的图像创新浪潮中,腾讯的最新研究成果FaceStudio展现出了更进一步的技术突破。这项研究不仅专注于快速合成人像,还更注重于保留人像的身份信息,以满足美观需求的同时保持人物的独特性和识别度。它不仅继承了开源算法StableDiffusion的核心优点,还在多个关键功能上进行了创新性改进。其中最引人注目的是其利用混合引导进行图像生成的能力,特别在处理多人照片和风格化图像两个方面体现出来
FaceStudio 的核心技术在于其能够在不牺牲个人身份特征的情况下,实现风格化的人物图像合成。传统的 AI 图像合成技术往往在追求视觉美感的同时,会牺牲人物的独特性和识别度。然而,FaceStudio 通过先进的混合引导机制,能够在生成图像时同时考虑文本提示、风格图像和身份图像,从而在保持个体特征的基础上实现多样化的风格转换。这不仅仅是技术上的一大突破,也为用户提供了更加丰富和个性化的图像合成选择。
此外,FaceStudio 独特的多身份交叉注意机制,使其在处理包含多个人物的图像时尤为出色。传统方法在处理此类图像时常常会遇到难以准确区分和维持每个人物特征的问题。但 FaceStudio 的这一机制可以准确地将不同身份的特征信息映射到图像的相应部分,无论是在保持每个人物的独特性,还是在整体风格的协调性上都表现卓越。
FaceStudio 支持多种人脸相关的有趣应用
- 论文地址:https://arxiv.org/abs/2312.02663
- 主页地址:https://icoz69.github.io/facestudio/
方法概述
混合引导设计
FaceStudio 的核心特性之一是其混合引导设计。该团队采用了一种独特的方法,允许模型同时接收图像和文本提示,从而生成具有特定身份特征的图像。基于图像提示的引导模块包含两个子模块:
- 图像引导模块:在这个部分,FaceStudio 使用 CLIP 视觉编码器来处理人类图像。这些图像通常是风格化的,含有丰富的视觉信息,如色彩、纹理和构图等。CLIP 编码器能够从这些图像中提取出复杂的风格特征。
- 身份识别模块:并行于图像引导模块,腾讯团队还设计了一个身份识别模块,这一模块使用 Arcface 模型来处理单独的面部图像。其主要目的是从面部图像中提取出关键的身份特征,如面部结构、表情和其他独特的生物识别信息。
在提取出风格化图像的视觉特征和面部图像的身份特征之后,这两组特征会被融合在一起。这个步骤通过一个线性层来完成,它将两种特征结合起来,创造一个综合的引导特征。这种方法的优点在于,它不仅能够保留人物的身份特征,还能够在图像生成过程中融入特定的风格和内容
FaceStudio 不仅仅具备图像引导功能,还集成了文本引导功能。这一功能是通过使用先行训练好的 PriorTransformer 模型来实现的。该模型能够将 CLIP 文本特征映射到相应的 CLIP 视觉特征。然后,与图像提示引导模块类似,这些视觉特征与身份识别模块的特征相结合,形成能够响应文本提示的综合引导特征。最后,这两种提示特征被加权融合,实现混合引导
需要重新编写的内容是:脸谱工作室的架构示意图
多人图像合成
在腾讯团队开发的FaceStudio框架中,有一个关键的创新,即"处理多人图像"部分。该部分专注于在单个图像中合成多个人物的肖像,以确保每个人物在最终图像中都能保持其独特的身份。面对一个包含多个人物的图像,FaceStudio采用了一种特殊的注意力机制。这个机制确保在图像合成过程中,每个人物区域的特征都只访问与之对应的身份信息。这意味着模型能够精确地控制每个人物的身份特征,确保它们在最终图像中呈现正确。为了实现这种精确的控制,腾讯团队使用了人物实例分割模型。该模型能够识别出图像中的不同人物,并将每个人物的区域与其对应的身份特征相关联。这样,模型就可以确保在合成图像时,每个人物的身份信息都得到了正确的引导
对比FaceStudio和基线算法在多人图像生成方面的效果
训练策略
腾讯团队为FaceStudio设计了一种以人类图像重建为目标的训练策略。他们通过这种方法,使用遮盖面部区域的原始图像作为风格化的人类图像的输入,并同时使用相同图像中裁剪的面部作为身份的输入。这样,模型在生成引导图像时能够更准确地保留人物的身份特征。与现有的生成模型训练方式不同,这种方法只依赖于人像作为训练数据,不需要文字标注,大大减轻了对标注数据的依赖。它能够更好地适应各种风格的人像
结果展示
FaceStudio 通过评估人脸相似度和人像生成时间来展现其独特的优势。实验结果显示,FaceStudio 生成单个人像只需要不到 4 秒即可完成,而基于优化的热门算法 DreamBooth 则需要长达 6 分钟。同时 FaceStudio 更好地保留了人像特征,有着更好的人脸相似度。实验结果对比如下:
研究人员对FaceStudio进行了与当前最佳人像生成模型算法的比较,使用了相同的图像作为样本。比较结果显示,FaceStudio在几乎所有的样本上都取得了更好或者同级别的效果。这进一步证明了FaceStudio具有强大的鲁棒性和泛化性能。具体的比较结果如下:
此外,在FaceStudo的实验中还展示了多种独特的人脸图像生成应用,其中包括身份混合和文字图像混合引导生成
身份混合图像生成实验
文字图像混合引导图像生成实验
FaceStudio 生成的人像样例拥有多种风格
总结
综上所述,FaceStudio 的出现标志着个性化图像生成领域的重大进展。它在保持人物身份的同时,提供了丰富的风格化和文本驱动的图像生成选项。这种能力不仅对艺术创作和娱乐产业有巨大价值,也可能在广告、数字媒体制作和个性化内容创作等领域发挥重要作用。通过精确控制图像中的身份和风格,FaceStudio 为未来图像生成技术的发展开辟了新的道路,预示着这一领域的创新和变革
以上是GTA6预告片播放量超过10亿,AI巨头也能迅速进入GTA匪帮角色的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

DDREASE是一种用于从文件或块设备(如硬盘、SSD、RAM磁盘、CD、DVD和USB存储设备)恢复数据的工具。它将数据从一个块设备复制到另一个块设备,留下损坏的数据块,只移动好的数据块。ddreasue是一种强大的恢复工具,完全自动化,因为它在恢复操作期间不需要任何干扰。此外,由于有了ddasue地图文件,它可以随时停止和恢复。DDREASE的其他主要功能如下:它不会覆盖恢复的数据,但会在迭代恢复的情况下填补空白。但是,如果指示工具显式执行此操作,则可以将其截断。将数据从多个文件或块恢复到单

0.这篇文章干了啥?提出了DepthFM:一个多功能且快速的最先进的生成式单目深度估计模型。除了传统的深度估计任务外,DepthFM还展示了在深度修复等下游任务中的最先进能力。DepthFM效率高,可以在少数推理步骤内合成深度图。下面一起来阅读一下这项工作~1.论文信息标题:DepthFM:FastMonocularDepthEstimationwithFlowMatching作者:MingGui,JohannesS.Fischer,UlrichPrestel,PingchuanMa,Dmytr

谷歌力推的JAX在最近的基准测试中性能已经超过Pytorch和TensorFlow,7项指标排名第一。而且测试并不是在JAX性能表现最好的TPU上完成的。虽然现在在开发者中,Pytorch依然比Tensorflow更受欢迎。但未来,也许有更多的大模型会基于JAX平台进行训练和运行。模型最近,Keras团队为三个后端(TensorFlow、JAX、PyTorch)与原生PyTorch实现以及搭配TensorFlow的Keras2进行了基准测试。首先,他们为生成式和非生成式人工智能任务选择了一组主流

在iPhone上面临滞后,缓慢的移动数据连接?通常,手机上蜂窝互联网的强度取决于几个因素,例如区域、蜂窝网络类型、漫游类型等。您可以采取一些措施来获得更快、更可靠的蜂窝互联网连接。修复1–强制重启iPhone有时,强制重启设备只会重置许多内容,包括蜂窝网络连接。步骤1–只需按一次音量调高键并松开即可。接下来,按降低音量键并再次释放它。步骤2–该过程的下一部分是按住右侧的按钮。让iPhone完成重启。启用蜂窝数据并检查网络速度。再次检查修复2–更改数据模式虽然5G提供了更好的网络速度,但在信号较弱

波士顿动力Atlas,正式进入电动机器人时代!昨天,液压Atlas刚刚「含泪」退出历史舞台,今天波士顿动力就宣布:电动Atlas上岗。看来,在商用人形机器人领域,波士顿动力是下定决心要和特斯拉硬刚一把了。新视频放出后,短短十几小时内,就已经有一百多万观看。旧人离去,新角色登场,这是历史的必然。毫无疑问,今年是人形机器人的爆发年。网友锐评:机器人的进步,让今年看起来像人类的开幕式动作、自由度远超人类,但这真不是恐怖片?视频一开始,Atlas平静地躺在地上,看起来应该是仰面朝天。接下来,让人惊掉下巴

哭死啊,全球狂炼大模型,一互联网的数据不够用,根本不够用。训练模型搞得跟《饥饿游戏》似的,全球AI研究者,都在苦恼怎么才能喂饱这群数据大胃王。尤其在多模态任务中,这一问题尤为突出。一筹莫展之际,来自人大系的初创团队,用自家的新模型,率先在国内把“模型生成数据自己喂自己”变成了现实。而且还是理解侧和生成侧双管齐下,两侧都能生成高质量、多模态的新数据,对模型本身进行数据反哺。模型是啥?中关村论坛上刚刚露面的多模态大模型Awaker1.0。团队是谁?智子引擎。由人大高瓴人工智能学院博士生高一钊创立,高

什么?疯狂动物城被国产AI搬进现实了?与视频一同曝光的,是一款名为「可灵」全新国产视频生成大模型。Sora利用了相似的技术路线,结合多项自研技术创新,生产的视频不仅运动幅度大且合理,还能模拟物理世界特性,具备强大的概念组合能力和想象力。数据上看,可灵支持生成长达2分钟的30fps的超长视频,分辨率高达1080p,且支持多种宽高比。另外再划个重点,可灵不是实验室放出的Demo或者视频结果演示,而是短视频领域头部玩家快手推出的产品级应用。而且主打一个务实,不开空头支票、发布即上线,可灵大模型已在快影

特斯拉机器人Optimus最新视频出炉,已经可以在厂子里打工了。正常速度下,它分拣电池(特斯拉的4680电池)是这样的:官方还放出了20倍速下的样子——在小小的“工位”上,拣啊拣啊拣:这次放出的视频亮点之一在于Optimus在厂子里完成这项工作,是完全自主的,全程没有人为的干预。并且在Optimus的视角之下,它还可以把放歪了的电池重新捡起来放置,主打一个自动纠错:对于Optimus的手,英伟达科学家JimFan给出了高度的评价:Optimus的手是全球五指机器人里最灵巧的之一。它的手不仅有触觉
