目录
使用场景
方法
应用场景:忘却有害内容等
结论
首页 科技周边 人工智能 RLHF 2%的算力应用于消除LLM有害输出,字节发布遗忘学习技术

RLHF 2%的算力应用于消除LLM有害输出,字节发布遗忘学习技术

Dec 14, 2023 pm 11:55 PM
模型 算力

随着大型语言模型(LLM)的发展,从业者面临更多挑战。如何避免 LLM 产生有害回复?如何快速删除训练数据中的版权保护内容?如何减少 LLM 幻觉(hallucinations,即错误事实)? 如何在数据政策更改后快速迭代 LLM?这些问题在人工智能法律和道德的合规要求日益成熟的大趋势下,对于 LLM 的安全可信部署至关重要。

目前业界的主流解决方案是通过使用强化学习的方式对齐LLM(对齐)来微调对比数据(正样本和负样本),以确保LLM的输出符合人类的预期和价值观。然而,这个对齐过程通常会受到数据收集和计算资源的限制

字节跳动提出了一种让LLM进行遗忘学习的方法来进行对齐。本文研究了如何在LLM上进行"遗忘"操作,即忘记有害行为或遗忘学习(Machine Unlearning)。作者展示了遗忘学习在三种LLM对齐场景上取得的明显效果:(1)删除有害输出;(2)移除侵权保护内容;(3)消除大语言LLM幻觉

遗忘学习有三个优势:(1) 只需负样本(有害样本),负样本比 RLHF 所需的正样本(高质量的人工手写输出)的收集简单的多(比如红队测试或用户报告);(2) 计算成本低;(3) 如果知道哪些训练样本导致 LLM 有害行为时,遗忘学习尤为有效。

作者的论点是,对于资源有限的从业者来说,他们应该优先考虑停止产生有害输出,而不是试图追求过于理想化的输出,并且忘记学习是一种方便的方法。尽管只有负样本,研究表明,在只使用2%的计算时间下,忘记学习仍然可以获得比强化学习和高温高频算法更好的对齐性能

RLHF 2%的算力应用于消除LLM有害输出,字节发布遗忘学习技术

  • 论文地址:https://arxiv.org/abs/2310.10683
  • 代码地址:https://github.com/kevinyaobytedance/llm_unlearn

使用场景

在资源有限的情况下,我们可以采用这种方法来最大程度地发挥优势。当我们没有预算请人员编写高质量样本或者计算资源不足时,我们应该优先停止 LLM 产生有害输出,而不是试图让它产生有益输出

有害的输出所造成的损害是无法被有益的输出所弥补的。如果一个用户向LLM提出100个问题,他得到的答案是有害的,那么他将失去信任,无论LLM之后提供了多少有益的答案。有害问题的预期输出可能是空格、特殊字符、无意义的字符串等,总之,必须是无害的文本

展示了LLM遗忘学习的三个成功案例:(1) 停止生成有害回复(请将内容改写为中文,不需要出现原始句子);这与RLHF情境相似,区别是本方法的目标是生成无害回复,而不是有益回复。当只有负样本时,这是能期望的最好结果。(2) 在使用侵权数据训练后,LLM成功删除了数据,并考虑到成本因素不能重新训练LLM;(3) LLM成功忘记了"幻觉"

RLHF 2%的算力应用于消除LLM有害输出,字节发布遗忘学习技术

请将内容改写为中文,不需要出现原始句子

方法

在微调步骤t中,LLM的更新如下:

RLHF 2%的算力应用于消除LLM有害输出,字节发布遗忘学习技术

第一项损失为梯度上升(graident descent),目的为忘记有害样本:

RLHF 2%的算力应用于消除LLM有害输出,字节发布遗忘学习技术

RLHF 2%的算力应用于消除LLM有害输出,字节发布遗忘学习技术为有害提示 (prompt),RLHF 2%的算力应用于消除LLM有害输出,字节发布遗忘学习技术为对应的有害回复。整体损失反向提升了有害样本的损失,即让 LLM “遗忘” 有害样本。

第二项损失是针对随机误配的,它要求LLM在有害提示的情况下预测出无关回复。这类似于分类中的标签平滑(label smoothing [2])。其目的是让LLM更好地遗忘有害提示上的有害输出。同时,实验证明这种方法可以提高LLM在正常情况下的输出性能

RLHF 2%的算力应用于消除LLM有害输出,字节发布遗忘学习技术

第三项损失为在正常任务上维持性能:

RLHF 2%的算力应用于消除LLM有害输出,字节发布遗忘学习技术

同 RLHF 类似,在预训练 LLM 上计算 KL 散度能更好保持 LLM 性能。

此外,所有的梯度上升和下降都只在输出(y)部分做,而不是像 RLHF 在提示 - 输出对(x, y)上。

应用场景:忘却有害内容等

本文用 PKU-SafeRLHF 数据作为遗忘数据,TruthfulQA 作为正常数据,图二的内容需要进行改写显示了遗忘学习后 LLM 在忘却的有害提示上输出的有害率。文中使用的方法为 GA(梯度上升和 GA+Mismatch:梯度上升 + 随机误配)。遗忘学习后的有害率接近于零。

RLHF 2%的算力应用于消除LLM有害输出,字节发布遗忘学习技术

图二的内容需要进行改写

第三张图显示了有害提示(不被遗忘)的输出结果,这是之前未曾见过的。即使是在没有被遗忘的有害提示上,LLM 的有害率也接近于零,这证明LLM遗忘的不仅仅是具体的样本,而是泛化到了包含有害概念的内容

RLHF 2%的算力应用于消除LLM有害输出,字节发布遗忘学习技术

图三

LLM 在正常样本上的性能和忘却前保持类似,同时具有以下特点

表一展示了生成的样本。可以看到在有害提示下,LLM 生成的样本都是无意义字符串,即无害输出。

RLHF 2%的算力应用于消除LLM有害输出,字节发布遗忘学习技术

表一

在其他场景中,比如忘却侵权内容和忘却幻觉,该方法的应用原文进行了详细的描述

RLHF 比较

需要改写的内容是:第二张表格展示了该方法和RLHF的比较,其中RLHF使用了正例,而遗忘学习方法只使用了负例,因此一开始该方法处于劣势。但即便如此,遗忘学习仍能达到与RLHF相似的对齐性能

RLHF 2%的算力应用于消除LLM有害输出,字节发布遗忘学习技术

需要改写的内容是:第二张表格

需要重写的内容:第四张图片显示了计算时间的比较,本方法只需 RLHF 2% 的计算时间。

RLHF 2%的算力应用于消除LLM有害输出,字节发布遗忘学习技术

需要重写的内容:第四张图片

即使只有负样本,使用遗忘学习的方法也可以获得与 RLHF 相当的无害率,并且只需使用 2% 的计算能力。因此,如果目标是停止输出有害内容,相比于 RLHF,遗忘学习的效率更高

结论

这项研究首次探索了LLM上的遗忘学习。研究结果显示,遗忘学习是一种有希望的对齐方法,尤其是在从业者资源不足的情况下。论文展示了三种情况:遗忘学习可以成功删除有害回复、删除侵权内容和消除错觉。研究表明,即使只有负样本,遗忘学习仍然可以在仅使用RLHF计算时间的2%情况下,获得与RLHF相似的对齐效果

以上是RLHF 2%的算力应用于消除LLM有害输出,字节发布遗忘学习技术的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
威尔R.E.P.O.有交叉游戏吗?
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

全球最强开源 MoE 模型来了,中文能力比肩 GPT-4,价格仅为 GPT-4-Turbo 的近百分之一 全球最强开源 MoE 模型来了,中文能力比肩 GPT-4,价格仅为 GPT-4-Turbo 的近百分之一 May 07, 2024 pm 04:13 PM

想象一下,一个人工智能模型,不仅拥有超越传统计算的能力,还能以更低的成本实现更高效的性能。这不是科幻,DeepSeek-V2[1],全球最强开源MoE模型来了。DeepSeek-V2是一个强大的专家混合(MoE)语言模型,具有训练经济、推理高效的特点。它由236B个参数组成,其中21B个参数用于激活每个标记。与DeepSeek67B相比,DeepSeek-V2性能更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,最大生成吞吐量提高到5.76倍。DeepSeek是一家探索通用人工智

AI颠覆数学研究!菲尔兹奖得主、华裔数学家领衔11篇顶刊论文|陶哲轩转赞 AI颠覆数学研究!菲尔兹奖得主、华裔数学家领衔11篇顶刊论文|陶哲轩转赞 Apr 09, 2024 am 11:52 AM

AI,的确正在改变数学。最近,一直十分关注这个议题的陶哲轩,转发了最近一期的《美国数学学会通报》(BulletinoftheAmericanMathematicalSociety)。围绕「机器会改变数学吗?」这个话题,众多数学家发表了自己的观点,全程火花四射,内容硬核,精彩纷呈。作者阵容强大,包括菲尔兹奖得主AkshayVenkatesh、华裔数学家郑乐隽、纽大计算机科学家ErnestDavis等多位业界知名学者。AI的世界已经发生了天翻地覆的变化,要知道,其中很多文章是在一年前提交的,而在这一

谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择 谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择 Apr 01, 2024 pm 07:46 PM

谷歌力推的JAX在最近的基准测试中性能已经超过Pytorch和TensorFlow,7项指标排名第一。而且测试并不是在JAX性能表现最好的TPU上完成的。虽然现在在开发者中,Pytorch依然比Tensorflow更受欢迎。但未来,也许有更多的大模型会基于JAX平台进行训练和运行。模型最近,Keras团队为三个后端(TensorFlow、JAX、PyTorch)与原生PyTorch实现以及搭配TensorFlow的Keras2进行了基准测试。首先,他们为生成式和非生成式人工智能任务选择了一组主流

你好,电动Atlas!波士顿动力机器人复活,180度诡异动作吓坏马斯克 你好,电动Atlas!波士顿动力机器人复活,180度诡异动作吓坏马斯克 Apr 18, 2024 pm 07:58 PM

波士顿动力Atlas,正式进入电动机器人时代!昨天,液压Atlas刚刚「含泪」退出历史舞台,今天波士顿动力就宣布:电动Atlas上岗。看来,在商用人形机器人领域,波士顿动力是下定决心要和特斯拉硬刚一把了。新视频放出后,短短十几小时内,就已经有一百多万观看。旧人离去,新角色登场,这是历史的必然。毫无疑问,今年是人形机器人的爆发年。网友锐评:机器人的进步,让今年看起来像人类的开幕式动作、自由度远超人类,但这真不是恐怖片?视频一开始,Atlas平静地躺在地上,看起来应该是仰面朝天。接下来,让人惊掉下巴

替代MLP的KAN,被开源项目扩展到卷积了 替代MLP的KAN,被开源项目扩展到卷积了 Jun 01, 2024 pm 10:03 PM

本月初,来自MIT等机构的研究者提出了一种非常有潜力的MLP替代方法——KAN。KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。KAN与MLP一样具有强大的数学基础,MLP基于通用逼近定理,而KAN基于Kolmogorov-Arnold表示定理。如下图所示,KAN在边上具

特斯拉机器人进厂打工,马斯克:手的自由度今年将达到22个! 特斯拉机器人进厂打工,马斯克:手的自由度今年将达到22个! May 06, 2024 pm 04:13 PM

特斯拉机器人Optimus最新视频出炉,已经可以在厂子里打工了。正常速度下,它分拣电池(特斯拉的4680电池)是这样的:官方还放出了20倍速下的样子——在小小的“工位”上,拣啊拣啊拣:这次放出的视频亮点之一在于Optimus在厂子里完成这项工作,是完全自主的,全程没有人为的干预。并且在Optimus的视角之下,它还可以把放歪了的电池重新捡起来放置,主打一个自动纠错:对于Optimus的手,英伟达科学家JimFan给出了高度的评价:Optimus的手是全球五指机器人里最灵巧的之一。它的手不仅有触觉

FisheyeDetNet:首个基于鱼眼相机的目标检测算法 FisheyeDetNet:首个基于鱼眼相机的目标检测算法 Apr 26, 2024 am 11:37 AM

目标检测在自动驾驶系统当中是一个比较成熟的问题,其中行人检测是最早得以部署算法之一。在多数论文当中已经进行了非常全面的研究。然而,利用鱼眼相机进行环视的距离感知相对来说研究较少。由于径向畸变大,标准的边界框表示在鱼眼相机当中很难实施。为了缓解上述描述,我们探索了扩展边界框、椭圆、通用多边形设计为极坐标/角度表示,并定义一个实例分割mIOU度量来分析这些表示。所提出的具有多边形形状的模型fisheyeDetNet优于其他模型,并同时在用于自动驾驶的Valeo鱼眼相机数据集上实现了49.5%的mAP

DualBEV:大幅超越BEVFormer、BEVDet4D,开卷! DualBEV:大幅超越BEVFormer、BEVDet4D,开卷! Mar 21, 2024 pm 05:21 PM

这篇论文探讨了在自动驾驶中,从不同视角(如透视图和鸟瞰图)准确检测物体的问题,特别是如何有效地从透视图(PV)到鸟瞰图(BEV)空间转换特征,这一转换是通过视觉转换(VT)模块实施的。现有的方法大致分为两种策略:2D到3D和3D到2D转换。2D到3D的方法通过预测深度概率来提升密集的2D特征,但深度预测的固有不确定性,尤其是在远处区域,可能会引入不准确性。而3D到2D的方法通常使用3D查询来采样2D特征,并通过Transformer学习3D和2D特征之间对应关系的注意力权重,这增加了计算和部署的

See all articles