目录
以下为几种常见的时序分析算法
1 深度学习时序分析
RNN(循环神经网络)
LSTM(长短时记忆网络)
2 传统的时序分析模型
自回归模型 AR
移动平均法(MA)
自回归滑动平均模型
自回归差分移动平均线(Autoregressive Integrated Moving Average, ARIMA)
季节性自回归整合移动平均模型 SARIMA
具有外生回归量的季节性自回归整合移动平均模型 SARIMAX
3 其他时序模型
首页 科技周边 人工智能 时序分析中的常用算法,都在这里了

时序分析中的常用算法,都在这里了

Dec 15, 2023 pm 02:17 PM
深度学习 自回归模型 时序分析

时间序列分析是利用事件在过去一段时间内的特征来预测未来一段时间内该事件的特征。这是一种相对较为复杂的预测建模问题,与回归分析模型的预测有所不同。时间序列模型依赖于事件发生的先后顺序,同样大小的值改变顺序后输入模型会产生不同的结果

时序分析中的常用算法,都在这里了

时序问题都看成是回归问题,只是回归的方式(线性回归、树模型、深度学习等)有一定的区别。

时序分析包括静态时序分析(STA)和动态时序分析。

以下为几种常见的时序分析算法

1 深度学习时序分析

RNN(循环神经网络)

循环神经网络是指一个随着时间的推移,重复发生的结构。在自然语言处理(NLP),语音图像等多个领域均有非常广泛的应用。RNN网络和其他网络最大的不同就在于RNN能够实现某种“记忆功能”,是进行时间序列分析时最好的选择。如同人类能够凭借自己过往的记忆更好地认识这个世界一样。RNN也实现了类似于人脑的这一机制,对所处理过的信息留存有一定的记忆,而不像其他类型的神经网络并不能对处理过的信息留存记忆。

长处:

这种方法可以记忆时间,适用于解决时间序列中间间隔较短的问题

缺点:

长时间步数据容易出现梯度消失和梯度爆炸的问题

LSTM(长短时记忆网络)

LSTM(长短时记忆网络,Long Short-Term Memory)是一种时间循环神经网络,旨在解决常规循环神经网络(RNN)中存在的长期依赖问题而设计的。所有RNN都由一系列重复的神经网络模块构成

长处:

适合于处理和预测时间序列中间隔和延迟非常长的重要事件。

缺点:

模型参数过多会导致过拟合问题的出现

2 传统的时序分析模型

  • 自回归(Auto Regression, AR)
  • 移动平均线(Moving Average, MA)
  • 自回归移动平均线(Autoregressive Moving Average, ARMA)
  • 自回归综合移动平均线(Autoregressive Integrated Moving Average, ARIMA)
  • 季节性自回归整合移动平均线(Seasonal Autoregressive Integrated Moving Average, SARIMA)
  • 具有外生回归量的季节性自回归整合移动平均线(Seasonal Autoregressive Integrated Moving-Average with Exogenous Regressors, SARIMAX)

自回归模型 AR

自回归模型(Autoregressive Model,简称 AR 模型)是一种时间序列分析方法,用于描述一个时间序列变量与其过去值之间的关系。AR模型假设当前观测值与过去的观测值之间存在线性关系,通过使用过去的观测值来预测未来的观测值。

长处:

  • 简单性:AR模型是一种线性模型,易于理解和实现。它仅使用过去的观测值作为自变量,没有其他复杂的因素需要考虑。
  • 建模能力:AR模型可以捕捉时间序列数据的自相关结构,即当前观测值与过去观测值之间的关系。它能够提供对未来观测值的预测,并揭示数据中的趋势和模式。

缺点:

  • 只适用于平稳序列:AR模型要求时间序列是平稳的,即均值、方差和自相关不随时间变化。如果序列不平稳,可能需要进行差分操作或使用其他模型来处理非平稳性。
  • 对过去观测值敏感:AR模型的预测结果受到过去观测值的影响,因此在处理长期预测时可能会出现误差累积的问题。较大的阶数可能会导致模型过拟合,而较小的阶数可能无法捕捉到时间序列的复杂动态。
  • 无法处理季节性数据:AR模型无法直接处理具有明显季节性的时间序列。对于具有季节性模式的数据,可以使用季节性AR模型(SAR)或ARIMA模型进行建模。

移动平均法(MA)

移动平均法(MA):这种方法是基于数据的平均值,并假设未来的值与过去的值之间具有一定的稳定性

长处:

能够捕捉到时间序列数据中的移动平均关系。MA模型利用过去时间步白噪声误差项的线性组合来预测当前观测值,因此可以捕捉到数据中的移动平均性。

相对简单和直观。MA模型的参数表示过去时间步白噪声误差项的权重,可以通过估计这些权重来拟合模型。

缺点:

  • 只能捕捉到移动平均关系,无法捕捉到自回归关系。MA模型忽略了过去时间步观测值,可能无法捕捉到数据中的自相关性。
  • 对于某些时间序列数据,MA模型可能需要较高的阶数才能较好地拟合数据,导致模型复杂度增加。

自回归滑动平均模型

自回归滑动平均模型(ARMA模型,Auto-Regression and Moving AverageModel)是研究时间序列的重要方法,由自回归模型(AR模型)与滑动平均模型(MA模型)为基础“混合”而成,具有适用范围广、预测误差小的特点。

自回归差分移动平均线(Autoregressive Integrated Moving Average, ARIMA)

ARIMA 模型是自回归差分移动平均模型的缩写,全称为 Autoregressive Integrated Moving Average Model。这个模型主要由三个部分组成,分别是自回归模型 (AR)、差分过程 (I) 和移动平均模型 (MA)

ARIMA模型的基本思想是利用数据本身的历史信息来预测未来。一个时间点上的标签值既受过去一段时间内的标签值影响,也受过去一段时间内的偶然事件的影响,这就是说,ARIMA模型假设:标签值是围绕着时间的大趋势而波动的,其中趋势是受历史标签影响构成的,波动是受一段时间内的偶然事件影响构成的,且大趋势本身不一定是稳定的

ARIMA模型是一种时间序列分析方法,通过对数据的自相关性和差分进行建模,来提取数据中隐藏的时间序列模式,进而预测未来的数据

  • AR部分用于处理时间序列的自回归部分,它考虑了过去若干时期的观测值对当前值的影响。
  • I部分用于使非平稳时间序列达到平稳,通过一阶或者二阶等差分处理,消除了时间序列中的趋势和季节性因素。
  • MA部分用于处理时间序列的移动平均部分,它考虑了过去的预测误差对当前值的影响。

结合这三部分,ARIMA模型既可以捕捉到数据的趋势变化,又可以处理那些有临时、突发的变化或者噪声较大的数据。所以,ARIMA模型在很多时间序列预测问题中都有很好的表现。

长处:

模型的构建非常简单,只需要使用内生变量,而无需借助其他外生变量。所谓内生变量是指仅依赖于数据本身的变量,而不像回归模型需要其他变量的支持

缺点:

时序数据的要求是稳定的,或者经过差分处理后变得稳定

本质上只能捕捉线性关系,而不能捕捉非线性关系。

季节性自回归整合移动平均模型 SARIMA

SARIMA是一种常用的时序分析方法,它是ARIMA模型在季节性数据上的扩展。SARIMA模型可以用于预测季节性时间序列数据,例如每年的销售额或每周的网站访问量。以下是SARIMA模型的优缺点:

长处:

  • SARIMA模型可以很好地处理季节性数据,因为它考虑了时间序列数据中的季节性因素。
  • SARIMA模型可以对时间序列数据进行长期预测,因为它可以捕捉到数据中的趋势和周期性变化。
  • SARIMA模型可以用于多变量时间序列数据,因为它可以同时考虑多个变量之间的关系。

缺点:

  • SARIMA模型需要大量的历史数据来训练,因此在数据量较少的情况下可能不太适用。
  • SARIMA模型对异常值比较敏感,因此需要对异常值进行处理。
  • SARIMA模型的计算复杂度较高,需要进行大量的计算和优化。

具有外生回归量的季节性自回归整合移动平均模型 SARIMAX

季节性自回归整合移动平均模型(SARIMAX)是在差分移动自回归模型(ARIMA)的基础上加上外生回归量的模型。它适用于具有明显周期性和季节性特征的时间序列数据

3 其他时序模型

这类方法以 lightgbm、xgboost 为代表,一般就是把时序问题转换为监督学习,通过特征工程和机器学习方法去预测;这种模型可以解决绝大多数的复杂的时序预测模型。支持复杂的数据建模,支持多变量协同回归,支持非线性问题。

特征工程的重要性不言而喻,它对于机器学习的成功起到了关键作用。然而,特征工程并不是一项简单的任务,它需要复杂的人工处理和独特的专业知识。特征工程的水平往往决定了机器学习的上限,而机器学习算法只是在尽可能接近这个上限。 一旦特征工程完成,我们可以直接应用树模型算法——lightgbm和xgboost。这两个模型是非常常见且高效的建模方法。除此之外,它们还具有以下特点:

  • 计算速度快,模型精度高;
  • 缺失值不需要处理,比较方便;
  • 支持 category 变量;
  • 支持特征交叉。

具体选择哪种方法需要根据数据的性质、问题的特点以及自身的经验和能力来综合考量。

需要根据具体的数据特征、问题要求和自身的能力来选择合适的时间序列预测方法。有时,结合多个方法可以提高预测的准确性和稳定性。同时,为了更好地选择模型和评估预测结果,对数据进行可视化分析和模型诊断也是很重要的。

以上是时序分析中的常用算法,都在这里了的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
威尔R.E.P.O.有交叉游戏吗?
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

Python中使用BERT进行情感分析的方法及步骤 Python中使用BERT进行情感分析的方法及步骤 Jan 22, 2024 pm 04:24 PM

BERT是由Google在2018年提出的一种预训练的深度学习语言模型。全称为BidirectionalEncoderRepresentationsfromTransformers,它基于Transformer架构,具有双向编码的特点。相比于传统的单向编码模型,BERT在处理文本时能够同时考虑上下文的信息,因此在自然语言处理任务中表现出色。它的双向性使得BERT能够更好地理解句子中的语义关系,从而提高了模型的表达能力。通过预训练和微调的方法,BERT可以用于各种自然语言处理任务,如情感分析、命名

常用的AI激活函数解析:Sigmoid、Tanh、ReLU和Softmax的深度学习实践 常用的AI激活函数解析:Sigmoid、Tanh、ReLU和Softmax的深度学习实践 Dec 28, 2023 pm 11:35 PM

激活函数在深度学习中扮演着至关重要的角色,它们能够为神经网络引入非线性特性,使得网络能够更好地学习和模拟复杂的输入输出关系。正确选择和使用激活函数对于神经网络的性能和训练效果有着重要的影响本文将介绍四种常用的激活函数:Sigmoid、Tanh、ReLU和Softmax,从简介、使用场景、优点、缺点和优化方案五个维度进行探讨,为您提供关于激活函数的全面理解。1、Sigmoid函数SIgmoid函数公式简介:Sigmoid函数是一种常用的非线性函数,可以将任何实数映射到0到1之间。它通常用于将不归一

超越ORB-SLAM3!SL-SLAM:低光、严重抖动和弱纹理场景全搞定 超越ORB-SLAM3!SL-SLAM:低光、严重抖动和弱纹理场景全搞定 May 30, 2024 am 09:35 AM

写在前面今天我们探讨下深度学习技术如何改善在复杂环境中基于视觉的SLAM(同时定位与地图构建)性能。通过将深度特征提取和深度匹配方法相结合,这里介绍了一种多功能的混合视觉SLAM系统,旨在提高在诸如低光条件、动态光照、弱纹理区域和严重抖动等挑战性场景中的适应性。我们的系统支持多种模式,包括拓展单目、立体、单目-惯性以及立体-惯性配置。除此之外,还分析了如何将视觉SLAM与深度学习方法相结合,以启发其他研究。通过在公共数据集和自采样数据上的广泛实验,展示了SL-SLAM在定位精度和跟踪鲁棒性方面优

潜藏空间嵌入:解释与示范 潜藏空间嵌入:解释与示范 Jan 22, 2024 pm 05:30 PM

潜在空间嵌入(LatentSpaceEmbedding)是将高维数据映射到低维空间的过程。在机器学习和深度学习领域中,潜在空间嵌入通常是通过神经网络模型将高维输入数据映射为一组低维向量表示,这组向量通常被称为“潜在向量”或“潜在编码”。潜在空间嵌入的目的是捕捉数据中的重要特征,并将其表示为更简洁和可理解的形式。通过潜在空间嵌入,我们可以在低维空间中对数据进行可视化、分类、聚类等操作,从而更好地理解和利用数据。潜在空间嵌入在许多领域中都有广泛的应用,如图像生成、特征提取、降维等。潜在空间嵌入的主要

一文搞懂:AI、机器学习与深度学习的联系与区别 一文搞懂:AI、机器学习与深度学习的联系与区别 Mar 02, 2024 am 11:19 AM

在当今科技日新月异的浪潮中,人工智能(ArtificialIntelligence,AI)、机器学习(MachineLearning,ML)与深度学习(DeepLearning,DL)如同璀璨星辰,引领着信息技术的新浪潮。这三个词汇频繁出现在各种前沿讨论和实际应用中,但对于许多初涉此领域的探索者来说,它们的具体含义及相互之间的内在联系可能仍笼罩着一层神秘面纱。那让我们先来看看这张图。可以看出,深度学习、机器学习和人工智能之间存在着紧密的关联和递进关系。深度学习是机器学习的一个特定领域,而机器学习

从基础到实践,回顾Elasticsearch 向量检索发展史 从基础到实践,回顾Elasticsearch 向量检索发展史 Oct 23, 2023 pm 05:17 PM

1.引言向量检索已经成为现代搜索和推荐系统的核心组件。通过将复杂的对象(例如文本、图像或声音)转换为数值向量,并在多维空间中进行相似性搜索,它能够实现高效的查询匹配和推荐。从基础到实践,回顾Elasticsearch向量检索发展史_elasticsearchElasticsearch作为一款流行的开源搜索引擎,其在向量检索方面的发展也一直备受关注。本文将回顾Elasticsearch向量检索的发展历史,重点介绍各个阶段的特点和进展。以史为鉴,方便大家建立起Elasticsearch向量检索的全量

超强!深度学习Top10算法! 超强!深度学习Top10算法! Mar 15, 2024 pm 03:46 PM

自2006年深度学习概念被提出以来,20年快过去了,深度学习作为人工智能领域的一场革命,已经催生了许多具有影响力的算法。那么,你所认为深度学习的top10算法有哪些呢?以下是我心目中深度学习的顶尖算法,它们在创新性、应用价值和影响力方面都占据重要地位。1、深度神经网络(DNN)背景:深度神经网络(DNN)也叫多层感知机,是最普遍的深度学习算法,发明之初由于算力瓶颈而饱受质疑,直到近些年算力、数据的爆发才迎来突破。DNN是一种神经网络模型,它包含多个隐藏层。在该模型中,每一层将输入传递给下一层,并

AlphaFold 3 重磅问世,全面预测蛋白质与所有生命分子相互作用及结构,准确性远超以往水平 AlphaFold 3 重磅问世,全面预测蛋白质与所有生命分子相互作用及结构,准确性远超以往水平 Jul 16, 2024 am 12:08 AM

编辑|萝卜皮自2021年发布强大的AlphaFold2以来,科学家们一直在使用蛋白质结构预测模型来绘制细胞内各种蛋白质结构的图谱、发现药物,并绘制每种已知蛋白质相互作用的「宇宙图」 。就在刚刚,GoogleDeepMind发布了AlphaFold3模型,该模型能够对包括蛋白质、核酸、小分子、离子和修饰残基在内的复合物进行联合结构预测。 AlphaFold3的准确性对比过去许多专用工具(蛋白质-配体相互作用、蛋白质-核酸相互作用、抗体-抗原预测)有显着提高。这表明,在单个统一的深度学习框架内,可以实现

See all articles