陶哲轩采用大型模型的证明助手Lean,展现其偏爱
「我预计,如果使用得当,到 2026 年,AI 将成为数学研究和许多其他领域值得信赖的合著者。」数学家陶哲轩在之前的一篇博客中说道。
陶哲轩这样说了,也这样做了。
他最近一直在用 GPT-4、Copilot、Lean 等工具进行数学研究,并且还在 AI 的帮助下发现了自己论文中的一处隐藏 bug。
最近,陶哲轩表示Lean4项目已经成功完成了对多项式 Freiman-Ruzsa 猜想(PFR)的证明的形式化,仅耗时三周。与此同时,Lean编译器也报告该猜想符合标准公理。这是计算机和AI辅助证明的一项巨大成功,令人振奋
关于上述研究的更多内容,感兴趣的读者可以参考《陶哲轩用 AI 形式化的证明究竟是什么?一文看懂 PFR 猜想的前世今生》。
看到这,细心的读者可能已经发现了端倪,陶大神在进行数学研究时,多次都提到过 Lean。简单来讲,Lean 是一种可帮助数学家验证定理的编程语言,用户可以在其中编写和验证证明。相比初代 Lean,现在最新的 Lean 4 版本进行了多项优化,包括更快的编译器、改进的错误处理和更好的与外部工具集成的能力等。
在数学领域被广泛使用的 Lean,在大模型(LLM)刷屏的今天,两者有没有更好的结合方式呢?
现在已经有人实现了,开放平台 LeanDojo 团队(关于 LeanDojo,可参考「AI 大模型帮陶哲轩解题,还能证明数学定理了?」)和加州理工学院的研究者推出了 Lean Copilot,这是一款专为 LLM 与人类交互而设计的协作工具,旨在通过人机协作给出 100% 准确的形式化数学证明。
值得注意的是,LeanDojo 团队的研究主要集中在使用 LLM 自动化定理证明方面,从这点也不难看出,他们推出的 Lean Copilot 和 LLM 相关也不会令人吃惊。
项目地址:https://github.com/lean-dojo/LeanCopilot
对于这项研究,大家除了说 Cool,就是 very cool,评价还是很高的。
在 Lean 中使用 LLM,加快数学证明速度
一直以来,自动化定理证明面临重重困难,传统上,数学证明依赖于手工推导,需要细致的验证。现在随着 AI 的进步,研究者开始借助人工智能进行深入探索,但又免不了出现这种问题,即 LLM 在数学和推理任务中有时不是很靠谱,容易出现错误和幻觉。
Lean Copilot的功能是让用户可以在Lean中利用大型语言模型自动化证明过程,提高证明合成的速度。当需要时,用户还可以无缝地介入和修改,实现机器智能和人类智慧之间的平衡协作
使用Lean Copilot可以在Lean中使用LLM来实现证明自动化,包括策略建议、前提和搜索证明
用户可以选择使用LeanDojo提供的内置模型,或者导入自己的模型。这些模型可以在本地运行(无论是否有GPU),或者在云端运行
简而言之,Lean Copilot 为用户提供了一个灵活的方式,通过引入 LLM 来增强和优化在 Lean 中进行定理证明的过程。
Lean Copilot 的主要特点可总结为:
- LLM 能够提出证明步骤,搜索证明,并从大型数学库中选择有用的引理。
- Lean Copilot 可作为 Lean 包进行设置,并且能够无缝地在 Lean 的 VS Code 工作流中运行。
- 用户可以使用 LeanDojo 中的内置模型,或者使用自己的模型,这些模型可以在本地(有或没有 GPU)或云端运行。
- 该工具可在各种平台上运行,包括 Linux、macOS 和 Windows WSL。
为了使 LLM 更易于 Lean 用户使用,Lean Copilot 希望能够启动一个正反馈循环:证明自动化将带来更好的数据,并最终提高 LLM 在数学上的性能。
Copilot的效果演示
大家可以根据官方教程来配置 Lean Copilot,配置完成之后就可以开始实验了。项目的作者还提供了一些官方示例供参考
推荐方案。在导入LeanCopilot后,您可以使用suggest_tactics生成推荐方案。在使用过程中,您也可以点击推荐方案,并在证明中使用它(参考下图)
你可以使用一个前缀,比如simp,来限制生成的策略
搜索证明。使用search_proof将LLM生成的策略与aesop(Lean 4的白盒自动化项目)结合起来,以搜索多个策略证明。找到证明后,您可以单击该策略将其插入到编辑器中
重写后的内容:选择前提是一项重要策略。该策略的目的是检索一份潜在有用前提的清单。目前,Lean Copilot会利用LeanDojo中的检索工具,从Lean和mathlib4(即Lean 4数学库)的固定快照中选择前提
您可以运行LLM。无论是定理证明还是其他推理,都可以在Lean中运行LLM。您可以在本地或远程运行任何模型(请参阅自带模型)
项目中还提到了一些高级用法,感兴趣的读者,可以去原项目了解更多内容。
以上是陶哲轩采用大型模型的证明助手Lean,展现其偏爱的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

0.这篇文章干了啥?提出了DepthFM:一个多功能且快速的最先进的生成式单目深度估计模型。除了传统的深度估计任务外,DepthFM还展示了在深度修复等下游任务中的最先进能力。DepthFM效率高,可以在少数推理步骤内合成深度图。下面一起来阅读一下这项工作~1.论文信息标题:DepthFM:FastMonocularDepthEstimationwithFlowMatching作者:MingGui,JohannesS.Fischer,UlrichPrestel,PingchuanMa,Dmytr

想象一下,一个人工智能模型,不仅拥有超越传统计算的能力,还能以更低的成本实现更高效的性能。这不是科幻,DeepSeek-V2[1],全球最强开源MoE模型来了。DeepSeek-V2是一个强大的专家混合(MoE)语言模型,具有训练经济、推理高效的特点。它由236B个参数组成,其中21B个参数用于激活每个标记。与DeepSeek67B相比,DeepSeek-V2性能更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,最大生成吞吐量提高到5.76倍。DeepSeek是一家探索通用人工智

AI,的确正在改变数学。最近,一直十分关注这个议题的陶哲轩,转发了最近一期的《美国数学学会通报》(BulletinoftheAmericanMathematicalSociety)。围绕「机器会改变数学吗?」这个话题,众多数学家发表了自己的观点,全程火花四射,内容硬核,精彩纷呈。作者阵容强大,包括菲尔兹奖得主AkshayVenkatesh、华裔数学家郑乐隽、纽大计算机科学家ErnestDavis等多位业界知名学者。AI的世界已经发生了天翻地覆的变化,要知道,其中很多文章是在一年前提交的,而在这一

波士顿动力Atlas,正式进入电动机器人时代!昨天,液压Atlas刚刚「含泪」退出历史舞台,今天波士顿动力就宣布:电动Atlas上岗。看来,在商用人形机器人领域,波士顿动力是下定决心要和特斯拉硬刚一把了。新视频放出后,短短十几小时内,就已经有一百多万观看。旧人离去,新角色登场,这是历史的必然。毫无疑问,今年是人形机器人的爆发年。网友锐评:机器人的进步,让今年看起来像人类的开幕式动作、自由度远超人类,但这真不是恐怖片?视频一开始,Atlas平静地躺在地上,看起来应该是仰面朝天。接下来,让人惊掉下巴

本月初,来自MIT等机构的研究者提出了一种非常有潜力的MLP替代方法——KAN。KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。KAN与MLP一样具有强大的数学基础,MLP基于通用逼近定理,而KAN基于Kolmogorov-Arnold表示定理。如下图所示,KAN在边上具

什么?疯狂动物城被国产AI搬进现实了?与视频一同曝光的,是一款名为「可灵」全新国产视频生成大模型。Sora利用了相似的技术路线,结合多项自研技术创新,生产的视频不仅运动幅度大且合理,还能模拟物理世界特性,具备强大的概念组合能力和想象力。数据上看,可灵支持生成长达2分钟的30fps的超长视频,分辨率高达1080p,且支持多种宽高比。另外再划个重点,可灵不是实验室放出的Demo或者视频结果演示,而是短视频领域头部玩家快手推出的产品级应用。而且主打一个务实,不开空头支票、发布即上线,可灵大模型已在快影

哭死啊,全球狂炼大模型,一互联网的数据不够用,根本不够用。训练模型搞得跟《饥饿游戏》似的,全球AI研究者,都在苦恼怎么才能喂饱这群数据大胃王。尤其在多模态任务中,这一问题尤为突出。一筹莫展之际,来自人大系的初创团队,用自家的新模型,率先在国内把“模型生成数据自己喂自己”变成了现实。而且还是理解侧和生成侧双管齐下,两侧都能生成高质量、多模态的新数据,对模型本身进行数据反哺。模型是啥?中关村论坛上刚刚露面的多模态大模型Awaker1.0。团队是谁?智子引擎。由人大高瓴人工智能学院博士生高一钊创立,高

最近,军事圈被这个消息刷屏了:美军的战斗机,已经能由AI完成全自动空战了。是的,就在最近,美军的AI战斗机首次公开,揭开了神秘面纱。这架战斗机的全名是可变稳定性飞行模拟器测试飞机(VISTA),由美空军部长亲自搭乘,模拟了一对一的空战。5月2日,美国空军部长FrankKendall在Edwards空军基地驾驶X-62AVISTA升空注意,在一小时的飞行中,所有飞行动作都由AI自主完成!Kendall表示——在过去的几十年中,我们一直在思考自主空对空作战的无限潜力,但它始终显得遥不可及。然而如今,
