《人工智能全域变革图景展望:跃迁点来临(2023)》:高质量数据愈发稀缺
人工智能技术的迅猛发展对人类社会的生产和生活方式产生了重大影响。人工智能的应用场景日益丰富,AI技术已经在金融、医疗、制造、交通、教育、安防等多个领域得到了实际应用。《人工智能全域变革图景展望:跃迁点来临(2023)》指出,高质量的数据变得越来越稀缺,这将推动数据智能的飞速发展,围绕AI大模型的商业竞争也越来越激烈。作为模型训练的“原料”,数据(尤其是高质量的数据)正面临着短缺的危机
在Gartner2022年发布的人工智能技术成熟度曲线中,“以数据为中心的人工智能”(Data-centric AI)被列为人工智能技术和应用的四大创新类别之一,主要聚焦通过对训练数据集的改进提升模型的准确性和鲁棒性,其中数据的设计、改进和质量评估是关键。此外,《生成式人工智能服务管理暂行办法》中也明确提出需要采取有效措施提高训练数据质量,增强训练数据的真实性、准确性、客观性、多样性。
大模型的训练需要大量的高质量数据,但是目前在数据质量方面还存在一定的问题,包括数据噪声、数据缺失、数据不平衡等问题,均会影响大模型的训练效果和准确性。预计大模型领域不断进发的高质量数据需求,将倒逼数据在大规模、多模态、高质量三大维度上的全面提升,数据智能相关技术有望迎来跨越式发展。
云测数据在人工智能数据领域拥有丰富的实践经验和深厚的专业背景。自成立以来,云测数据就以高质量、场景化的AI训练数据服务为基础,持续为智能驾驶、智慧城市、智能家居、智慧金融等众多领域提供高质量数据集、数据采集/数据标注服务、数据标平台&数据管理工具。形成了AI训练数据的“采、标、管、存”一站式服务, 实现了“数据原料”到最后的“数据成品”全链条打通,持续为计算机视觉、语音识别、自然语言处理、知识图谱等AI主流技术领域提供高价值数据支持。凭借优质的服务和技术能力,云测数据在业界获得了广泛的认可和好评。
针对人工智能时代数据需求和发展趋势,云测数据以技术创新加速行业发展为己任,先后推出“云测数据标注平台”、“AI数据集管理系统”、“垂直行业大模型AI数据解决方案”等技术成果,助力企业数据训练综合效率提升200%、标注精准度最高达99.99%,显著提升Al应用的规模化落地效果。
据处理和分析领域具有丰富的经验,在保护用户数据和个人隐私方面始终坚持最高标准。我们的团队拥有世界一流的安全专家,确保数据的机密性和完整性。同时,我们采用先进的加密技术和安全措施,以防止未经授权的访问和数据泄露。我们的目标是为客户提供安全可靠的云测服务,与此同时,我们将继续努力提升数据安全和个人信息保护的能力,以应对不断变化的威胁和挑战
以上是《人工智能全域变革图景展望:跃迁点来临(2023)》:高质量数据愈发稀缺的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

上周,在内部的离职潮和外部的口诛笔伐之下,OpenAI可谓是内忧外患:-侵权寡姐引发全球热议-员工签署「霸王条款」被接连曝出-网友细数奥特曼「七宗罪」辟谣:根据Vox获取的泄露信息和文件,OpenAI的高级领导层,包括Altman在内,非常了解这些股权回收条款,并且签署了它们。除此之外,还有一个严峻而紧迫的问题摆在OpenAI面前——AI安全。最近,五名与安全相关的员工离职,其中包括两名最著名的员工,“超级对齐”团队的解散让OpenAI的安全问题再次被置于聚光灯下。《财富》杂志报道称,OpenA

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S
