目录
Hadoop的三大核心组件是HDFS(分布式文件存储)、MapReduce(分布式计算)和YARN(资源调度)。
首页 常见问题 HADOOP三大核心组件分别是什么

HADOOP三大核心组件分别是什么

Jan 04, 2024 am 10:52 AM
hadoop 核心组件

HADOOP三大核心组件分别是HDFS、MapReduce和YARN。详细介绍:1、HDFS:即分布式文件系统,用于存储Hadoop集群中的大量数据。具有高容错性,可跨多个数据节点存储数据,并提供高吞吐量的数据访问;2、MapReduce:用于大规模数据集的并行处理。它将大数据任务分解为多个小任务,并在多个节点上并行处理,最后将结果汇总;3、YARN:负责集群资源的分配和管理。

HADOOP三大核心组件分别是什么

Hadoop的三大核心组件是HDFS(分布式文件存储)、MapReduce(分布式计算)和YARN(资源调度)。

1、HDFS:HADOOP分布式文件系统

HDFS(Hadoop Distributed File System)是 Hadoop 项目的核心子项目,主要负责集群数据的存储与读取,HDFS 是一个主/从(Master/Slave) 体系结构的分布式文件系统。HDFS 支持传统的层次型文件组织结构,用户或者应用程序可以创建目录,然后将文件保存在这些目录中。文件系统名字空间的层次结构和大多数现有的文件系统类似,可以通过文件路径对文件执行创建、读取、更新和删除操作。但是由于分布式存储的性质,它又和传统的文件系统有明显的区别。

HDFS优点:

  • 高容错性。HDFS上传的数据自动保存多个副本,可以通过增加副本的数据来增加它的容错性。如果某一个副本丢失,HDFS 会复制其他机器上的副本,而我们不必关注它的实现。
  • 适合大数据的处理。HDFS 能够处理 GB、TB 甚至 PB 级别的数据,规模达百万,数量非常大。(1PB=1024TB、1TB=1014GB)
  • 流式数据访问。HDFS 以流式数据访问模式来存储超大文件,一次写入,多次读取,即文件一旦写入,则不能修改,只能增加。这样可以保持数据的一致性。

2、MapReduce:大规模数据处理

MapReduce 是 Hadoop 核心计算框架,适用于大规模数据集(大于1TB)并行运算的编程模型,包括 Map(映射)和 Reduce(规约) 两部分。

当启动一个 MapReduce 任务时,Map 端会读取 HDFS 上的数据,将数据映射成所需要的键值对类型并传到 Reduce 端。Reduce 端接收 Map 端传过来的键值对类型的数据,根据不同键进行分组,对每一组键相同的数据进行处理,得到新的键值对并输出到 HDFS,这就是 MapReduce 的核心思想。

一个完整的 MapReduce 过程包含数据的输入与分片、Map 阶段数据处理、Reduce 阶段数据处理、数据输出等阶段:

  • 读取输入数据。MapReduce 过程中的数据是从 HDFS 分布式文件系统中读取的。文件在上传到 HDFS 时,一般按照 128MB 分成了几个数据块,所以在运行 MapReduce 程序时,每个数据块都会生成一个 Map,但是也可以通过重新设置文件分片大小调整 Map 的个数,在运行 MapReduce 时会根据所设置的分片大小对文件重新分割(Split),一个分片大小的数据块就会对应一个Map。
  • Map 阶段。程序有一个或多个 Map,由默认存储或分片个数决定。针对 Map 阶段,数据以键值对的形式读入,键的值一般为每行首字符与文件最初始位置的偏移量,即中间所隔字符个数,值为这一行的数据记录。根据需求对键值对进行处理,映射成新的键值对,将新的键值对传到 Reduce 端。
  • Shuffle/Sort 阶段:此阶段是指从 Map 输出开始,传送 Map 输出到 Reduce 作为输入的过程。该过程会将同一个 Map 中输出的键相同的数据先进行一步整合,减少传输的数据量,并且在整合后将数据按照键排序。
  • Reduce 阶段:Reduce 任务也可以有多个,按照 Map 阶段设置的数据分区确定,一个分区数据被一个 Reduce 处理。针对每一个 Reduce 任务,Reduce 会接收到不同 Map 任务传来的数据,并且每个 Map 传来的数据都是有序的。一个 Reduce 任务中的每一次处理都是针对所有键相同的数据,对数据进行规约,以新的键值对输出到 HDFS。

3、Yarn:资源管理器

Hadoop 的 MapReduce 架构称为 YARN(Yet Another Resource Negotiator,另一种资源协调者),是效率更高的资源管理核心。

YARN 主要包含三大模块:Resource Manager(RM)、Node Manager(NM)、Application Master(AM):

  • Resource Manager 负责所有资源的监控、分配和管理;
  • Application Master 负责每一个具体应用程序的调度和协调;
  • Node Manager 负责每一个节点的维护。

以上是HADOOP三大核心组件分别是什么的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它们
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

Java错误:Hadoop错误,如何处理和避免 Java错误:Hadoop错误,如何处理和避免 Jun 24, 2023 pm 01:06 PM

Java错误:Hadoop错误,如何处理和避免当使用Hadoop处理大数据时,常常会遇到一些Java异常错误,这些错误可能会影响任务的执行,导致数据处理失败。本文将介绍一些常见的Hadoop错误,并提供处理和避免这些错误的方法。Java.lang.OutOfMemoryErrorOutOfMemoryError是Java虚拟机内存不足的错误。当Hadoop任

颜水成/程明明新作!Sora核心组件DiT训练提速10倍,Masked Diffusion Transformer V2开源 颜水成/程明明新作!Sora核心组件DiT训练提速10倍,Masked Diffusion Transformer V2开源 Mar 13, 2024 pm 05:58 PM

作为Sora引人注目的核心技术之一,DiT利用DiffusionTransformer将生成模型扩展到更大的规模,从而实现出色的图像生成效果。然而,更大的模型规模导致训练成本飙升。SeaAILab、南开大学、昆仑万维2050研究院的颜水成和程明明研究团队在ICCV2023会议上提出了一种名为MaskedDiffusionTransformer的新模型。该模型利用mask建模技术,通过学习语义表征信息来加快DiffusionTransfomer的训练速度,并在图像生成领域取得了SoTA的效果。这一

在Beego中使用Hadoop和HBase进行大数据存储和查询 在Beego中使用Hadoop和HBase进行大数据存储和查询 Jun 22, 2023 am 10:21 AM

随着大数据时代的到来,数据处理和存储变得越来越重要,如何高效地管理和分析大量的数据也成为企业面临的挑战。Hadoop和HBase作为Apache基金会的两个项目,为大数据存储和分析提供了一种解决方案。本文将介绍如何在Beego中使用Hadoop和HBase进行大数据存储和查询。一、Hadoop和HBase简介Hadoop是一个开源的分布式存储和计算系统,它可

如何使用PHP和Hadoop进行大数据处理 如何使用PHP和Hadoop进行大数据处理 Jun 19, 2023 pm 02:24 PM

随着数据量的不断增大,传统的数据处理方式已经无法处理大数据时代带来的挑战。Hadoop是开源的分布式计算框架,它通过分布式存储和处理大量的数据,解决了单节点服务器在大数据处理中带来的性能瓶颈问题。PHP是一种脚本语言,广泛应用于Web开发,而且具有快速开发、易于维护等优点。本文将介绍如何使用PHP和Hadoop进行大数据处理。什么是HadoopHadoop是

Java技术平台的核心组件和功能的全面分析 Java技术平台的核心组件和功能的全面分析 Jan 09, 2024 pm 08:01 PM

深入剖析Java技术平台的核心组件和功能Java技术广泛应用于多个领域,成为了一种主流的编程语言和开发平台。Java技术平台由一系列核心组件和功能构成,这些组件和功能为开发者提供了丰富的工具和资源,使得Java开发变得更加高效和便捷。本文将深入剖析Java技术平台的核心组件和功能,探讨其在软件开发中的重要性和应用场景。首先,Java虚拟机(JVM)是Java

探索Java在大数据领域的应用:Hadoop、Spark、Kafka等技术栈的了解 探索Java在大数据领域的应用:Hadoop、Spark、Kafka等技术栈的了解 Dec 26, 2023 pm 02:57 PM

Java大数据技术栈:了解Java在大数据领域的应用,如Hadoop、Spark、Kafka等随着数据量不断增加,大数据技术成为了当今互联网时代的热门话题。在大数据领域,我们常常听到Hadoop、Spark、Kafka等技术的名字。这些技术起到了至关重要的作用,而Java作为一门广泛应用的编程语言,也在大数据领域发挥着巨大的作用。本文将重点介绍Java在大

linux下安装Hadoop的方法是什么 linux下安装Hadoop的方法是什么 May 18, 2023 pm 08:19 PM

一:安装JDK1.执行以下命令,下载JDK1.8安装包。wget--no-check-certificatehttps://repo.huaweicloud.com/java/jdk/8u151-b12/jdk-8u151-linux-x64.tar.gz2.执行以下命令,解压下载的JDK1.8安装包。tar-zxvfjdk-8u151-linux-x64.tar.gz3.移动并重命名JDK包。mvjdk1.8.0_151//usr/java84.配置Java环境变量。echo'

利用PHP实现大规模数据处理:Hadoop、Spark、Flink等 利用PHP实现大规模数据处理:Hadoop、Spark、Flink等 May 11, 2023 pm 04:13 PM

随着数据量的不断增加,大规模数据处理已经成为了企业必须面对和解决的问题。传统的关系型数据库已经无法满足这种需求,而对于大规模数据的存储和分析,Hadoop、Spark、Flink等分布式计算平台成为了最佳选择。在数据处理工具的选择过程中,PHP作为一种易于开发和维护的语言,越来越受到开发者的欢迎。在本文中,我们将探讨如何利用PHP来实现大规模数据处理,以及如