Why %util number from iostat is meaningless for MySQL capaci_MySQL
Earlier this month I wrote aboutvmstat iowait cpu numbersand some of the comments I got were advertising the use of util% as reported by the iostat tool instead. I find this number even more useless for MySQL performance tuning and capacity planning.
Now let me start by saying this is a really tricky and deceptive number. Many DBAs who report instances of their systems having a very busy IO subsystem said the util% in vmstat was above 99% and therefore they believe this number is a good indicator of an overloaded IO subsystem.
Indeed – when your IO subsystem is busy, up to its full capacity, the utilization should be very close to 100%. However, it is perfectly possible for the IO subsystem and MySQL with it to have plenty more capacity than when utilization is showing 100% – as I will show in an example.
Before that though lets see what the iostat manual page has to say on this topic – fromthis main pagewe can read:
%util
Percentage of CPU time during which I/O requests were issued to the device (bandwidth utilization for the device). Device saturation occurs when this value is close to 100% for devices serving requests serially. But for devices serving requests in parallel, such as RAID arrays and modern SSDs, this number does not reflect their performance limits.
Which says right here that the number is useless for pretty much any production database server that is likely to be running RAID, Flash/SSD, SAN or cloud storage (such as EBS) capable of handling multiple requests in parallel.
Let’s look at the following illustration. I will run sysbench on a system with a rather slow storage data size larger than buffer pool and uniform distribution to put pressure on the IO subsystem. I will use a read-only benchmark here as it keeps things more simple…
sysbench –num-threads=1 –max-requests=0 –max-time=6000000 –report-interval=10 –test=oltp –oltp-read-only=on –db-driver=mysql –oltp-table-size=100000000 –oltp-dist-type=uniform –init-rng=on –mysql-user=root –mysql-password= run
I’m seeing some 9 transactions per second, while disk utilization from iostat is at nearly 96%:
[ 80s] threads: 1, tps: 9.30, reads/s: 130.20, writes/s: 0.00 response time: 171.82ms (95%)
[ 90s] threads: 1, tps: 9.20, reads/s: 128.80, writes/s: 0.00 response time: 157.72ms (95%)
[ 100s] threads: 1, tps: 9.00, reads/s: 126.00, writes/s: 0.00 response time: 215.38ms (95%)
[ 110s] threads: 1, tps: 9.30, reads/s: 130.20, writes/s: 0.00 response time: 141.39ms (95%)
Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await svctm %utildm-0 0.00 0.00 127.90 0.70 4070.40 28.00 31.87 1.01 7.83 7.52 96.68
This makes a lot of sense – with read single thread read workload the drive should be only used getting data needed by the query, which will not be 100% as there is some extra time needed to process the query on the MySQL side as well as passing the result set back to sysbench.
So 96% utilization; 9 transactions per second, this is a close to full-system capacity with less than 5% of device time to spare, right?
Let’s run a benchmark with more concurrency – 4 threads at the time; we’ll see…
[ 110s] threads: 4, tps: 21.10, reads/s: 295.40, writes/s: 0.00 response time: 312.09ms (95%)
[ 120s] threads: 4, tps: 22.00, reads/s: 308.00, writes/s: 0.00 response time: 297.05ms (95%)
[ 130s] threads: 4, tps: 22.40, reads/s: 313.60, writes/s: 0.00 response time: 335.34ms (95%)
Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await svctm %utildm-0 0.00 0.00 295.40 0.90 9372.80 35.20 31.75 4.06 13.69 3.38 100.01
So we’re seeing 100% utilization now, but what is interesting – we’re able to reclaim much more than less than 5% which was left if we look at utilization – throughput of the system increased about 2.5x
Finally let’s do the test with 64 threads – this is more concurrency than exists at storage level which is conventional hard drives in RAID on this system…
[ 70s] threads: 64, tps: 42.90, reads/s: 600.60, writes/s: 0.00 response time: 2516.43ms (95%)
[ 80s] threads: 64, tps: 42.40, reads/s: 593.60, writes/s: 0.00 response time: 2613.15ms (95%)
[ 90s] threads: 64, tps: 44.80, reads/s: 627.20, writes/s: 0.00 response time: 2404.49ms (95%)
Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await svctm %utildm-0 0.00 0.00 601.20 0.80 19065.60 33.60 31.73 65.98 108.72 1.66 100.00
In this case we’re getting 4.5x of throughput compared to single thread and 100% utilization. We’re also getting almost double throughput of the run with 4 thread where 100% utilization was reported. This makes sense – there are 4 drives which can work in parallel and with many outstanding requests they are able to optimize their seeks better hence giving a bit more than 4x.
So what have we so ? The system which was 96% capacity but which could have driven still to provide 4.5x throughput – so it had plenty of extra IO capacity. More powerful storage might have significantly more ability to run requests in parallel so it is quite possible to see 10x or more room after utilization% starts to be reported close to 100%
So if utilization% is not very helpful what can we use to understand our database IO capacity better ? First lets look at the performance reported from those sysbench runs. If we look at 95% response time you can see 1 thread and 4 threads had relatively close 95% time growing just from 150ms to 250-300ms. This is the number I really like to look at- if system is able to respond to the queries with response time not significantly higher than it has with concurrency of 1 it is not overloaded. I like using 3x as multiplier – ie when 95% spikes to be more than 3x of the single concurrency the system might be getting to the overload.
With 64 threads the 95% response time is 15-20x of the one we see with single thread so it is surely overloaded.
Do we have anything reported by iostat which we can use in a similar way? It turns out we do! Check out the “await” column which tells us how much the requester had to wait for the IO request to be serviced. With single concurrency it is 7.8ms which is what this drives can do for random IO and is as good as it gets. With 4 threads it is 13.7ms – less than double of best possible, so also good enough… with concurrency of 64 it is however 108ms which is over 10x of what this device could produce with no waiting and which is surely sign of overload.
A couple words of caution. First, do not look at svctm which is not designed with parallel processing in mind. You can see in our case it actually gets better with high concurrency while really database had to wait a lot longer for requests submitted. Second, iostat mixes together reads and writes in single statistics which specifically for databases and especially on RAID with BBU might be like mixing apples and oranges together – writes should go to writeback cache and be acknowledged essentially instantly while reads only complete when actual data can be delivered. The toolpt-diskstatsfromPercona Tookitbreaks them apart and so can be much more for storage tuning for database workload.
Final note – I used a read-only workload on purpose – when it comes to writes things can be even more complicated – MySQL buffer pool can be more efficient with more intensive writes plus group commit might be able to commit a lot of transactions with single disk write. Still, the same base logic will apply.
Summary:The take away is simple – util% only shows if a device has at least one operation to deal with or is completely busy, which does not reflect actual utilization for a majority of modern IO subsystems. So you may have a lot of storage IO capacity left even when utilization is close to 100%.

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

全表扫描在MySQL中可能比使用索引更快,具体情况包括:1)数据量较小时;2)查询返回大量数据时;3)索引列不具备高选择性时;4)复杂查询时。通过分析查询计划、优化索引、避免过度索引和定期维护表,可以在实际应用中做出最优选择。

InnoDB的全文搜索功能非常强大,能够显着提高数据库查询效率和处理大量文本数据的能力。 1)InnoDB通过倒排索引实现全文搜索,支持基本和高级搜索查询。 2)使用MATCH和AGAINST关键字进行搜索,支持布尔模式和短语搜索。 3)优化方法包括使用分词技术、定期重建索引和调整缓存大小,以提升性能和准确性。

是的,可以在 Windows 7 上安装 MySQL,虽然微软已停止支持 Windows 7,但 MySQL 仍兼容它。不过,安装过程中需要注意以下几点:下载适用于 Windows 的 MySQL 安装程序。选择合适的 MySQL 版本(社区版或企业版)。安装过程中选择适当的安装目录和字符集。设置 root 用户密码,并妥善保管。连接数据库进行测试。注意 Windows 7 上的兼容性问题和安全性问题,建议升级到受支持的操作系统。

聚集索引和非聚集索引的区别在于:1.聚集索引将数据行存储在索引结构中,适合按主键查询和范围查询。2.非聚集索引存储索引键值和数据行的指针,适用于非主键列查询。

文章讨论了流行的MySQL GUI工具,例如MySQL Workbench和PhpMyAdmin,比较了它们对初学者和高级用户的功能和适合性。[159个字符]

MySQL是一个开源的关系型数据库管理系统。1)创建数据库和表:使用CREATEDATABASE和CREATETABLE命令。2)基本操作:INSERT、UPDATE、DELETE和SELECT。3)高级操作:JOIN、子查询和事务处理。4)调试技巧:检查语法、数据类型和权限。5)优化建议:使用索引、避免SELECT*和使用事务。

MySQL 数据库中,用户和数据库的关系通过权限和表定义。用户拥有用户名和密码,用于访问数据库。权限通过 GRANT 命令授予,而表由 CREATE TABLE 命令创建。要建立用户和数据库之间的关系,需创建数据库、创建用户,然后授予权限。
