一文读懂分类模型评估指标
模型评估是深度学习和机器学习中非常重要的一部分,用于衡量模型的性能和效果。本文将逐步分解混淆矩阵,准确性,精度,召回率和F1分数
混淆矩阵
混淆矩阵用于评估模型在分类问题中的性能,它是一个展示模型对样本分类情况的表格。行代表实际类别,列代表预测类别。对于二分类问题,混淆矩阵的结构如下所示:
- True Positive (TP): 实际为正例,模型预测为正例的样本数,模型正确识别正面实例的能力。更高的TP通常是可取的
- False Negative (FN): 实际为正例,模型预测为负例的样本数,根据应用程序的不同,这可能是关键的(例如,未能检测到安全威胁)。
- False Positive (FP): 实际为负例,模型预测为正例的样本数,强调模型在不应该预测为正的情况下预测为正的情况,这可能会产生取决于应用的后果(例如,医疗诊断中不必要的治疗)
- True Negative (TN): 实际为负例,模型预测为负例的样本数,反映模型正确识别否定实例的能力。通常需要更高的TN
初学者看起来很乱,但实际上这很简单。后面的Negative/Positive是模型预测值,前面的True/False是模型预测的准确性。例如,True Negative表示模型预测为Negative且与实际值相符,即预测正确。这样就容易理解了。以下是一个简单的混淆矩阵:
from sklearn.metrics import confusion_matrix import seaborn as sns import matplotlib.pyplot as plt # Example predictions and true labels y_true = [1, 0, 1, 1, 0, 1, 0, 0, 1, 0] y_pred = [1, 0, 1, 0, 0, 1, 0, 1, 1, 1] # Create a confusion matrix cm = confusion_matrix(y_true, y_pred) # Visualize the blueprint sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", xticklabels=["Predicted 0", "Predicted 1"], yticklabels=["Actual 0", "Actual 1"]) plt.xlabel("Predicted") plt.ylabel("Actual") plt.show()
当你想强调正确的预测和整体准确性时,使用TP和TN。当你想了解你的模型所犯的错误类型时,使用FP和FN。例如,在误报成本很高的应用程序中,最小化误报可能是至关重要的。
举个例子,我们来谈谈垃圾邮件分类器。混淆矩阵可以帮助我们了解该分类器正确识别了多少封垃圾邮件,以及错误地将多少封非垃圾邮件标记为垃圾邮件
基于混淆矩阵,可以计算许多其他评估指标,例如准确度、精确度、召回率和F1分数。
Accuracy
根据我们上面的总结,计算的是能够正确预测的的比例,分子是TP和TN都是True,也就是模型预测对了的总数
Precision
可以看到公式,他计算的是Positive 的占比,也就是说数据中所有Positive的,正确预测对了有多少,所以精确度Precision又被称作查准率
在误报有重大后果或成本的情况下,这一点变得非常重要。以医学诊断模型为例,精确度的确保确保只有真正需要治疗的人接受治疗
Recall
回收率,又称为敏感度或真阳性率,是指模型捕捉到所有正类实例的能力
从公式中可以看出,它的主要目的是计算模型所捕获的实际正例的数量,也就是正例的比例。因此,Recall又被称为查全率
F1 Score
F1分数的计算公式为: F1 = 2 * (精确度 * 召回率) / (精确度 + 召回率) 其中,精确度是指模型预测为正例的样本中,实际为正例的比例;召回率是指模型正确预测为正例的样本数占所有实际为正例的样本数的比例。F1分数是精确度和召回率的调和平均值,它能够综合考虑模型的准确性和全面性,以评估模型的性能
F1分数很重要,因为它提供了精确率和召回率之间的折衷。当你想在准确率和召回率之间找到平衡时,或者说针对一般的应用可以使用F1 Score
总结
在本文中,我们详细介绍了混淆矩阵、准确度、精确度、召回率和F1分数,并指出这些指标可以有效评估和提升模型的性能
以上是一文读懂分类模型评估指标的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

在机器学习和数据科学领域,模型的可解释性一直是研究者和实践者关注的焦点。随着深度学习和集成方法等复杂模型的广泛应用,理解模型的决策过程变得尤为重要。可解释人工智能(ExplainableAI|XAI)通过提高模型的透明度,帮助建立对机器学习模型的信任和信心。提高模型的透明度可以通过多种复杂模型的广泛应用等方法来实现,以及用于解释模型的决策过程。这些方法包括特征重要性分析、模型预测区间估计、局部可解释性算法等。特征重要性分析可以通过评估模型对输入特征的影响程度来解释模型的决策过程。模型预测区间估计

本文将介绍如何通过学习曲线来有效识别机器学习模型中的过拟合和欠拟合。欠拟合和过拟合1、过拟合如果一个模型对数据进行了过度训练,以至于它从中学习了噪声,那么这个模型就被称为过拟合。过拟合模型非常完美地学习了每一个例子,所以它会错误地分类一个看不见的/新的例子。对于一个过拟合的模型,我们会得到一个完美/接近完美的训练集分数和一个糟糕的验证集/测试分数。略有修改:"过拟合的原因:用一个复杂的模型来解决一个简单的问题,从数据中提取噪声。因为小数据集作为训练集可能无法代表所有数据的正确表示。"2、欠拟合如

写在前面今天我们探讨下深度学习技术如何改善在复杂环境中基于视觉的SLAM(同时定位与地图构建)性能。通过将深度特征提取和深度匹配方法相结合,这里介绍了一种多功能的混合视觉SLAM系统,旨在提高在诸如低光条件、动态光照、弱纹理区域和严重抖动等挑战性场景中的适应性。我们的系统支持多种模式,包括拓展单目、立体、单目-惯性以及立体-惯性配置。除此之外,还分析了如何将视觉SLAM与深度学习方法相结合,以启发其他研究。通过在公共数据集和自采样数据上的广泛实验,展示了SL-SLAM在定位精度和跟踪鲁棒性方面优

20世纪50年代,人工智能(AI)诞生。当时研究人员发现机器可以执行类似人类的任务,例如思考。后来,在20世纪60年代,美国国防部资助了人工智能,并建立了实验室进行进一步开发。研究人员发现人工智能在许多领域都有用武之地,例如太空探索和极端环境中的生存。太空探索是对宇宙的研究,宇宙涵盖了地球以外的整个宇宙空间。太空被归类为极端环境,因为它的条件与地球不同。要在太空中生存,必须考虑许多因素,并采取预防措施。科学家和研究人员认为,探索太空并了解一切事物的现状有助于理解宇宙的运作方式,并为潜在的环境危机

C++中机器学习算法面临的常见挑战包括内存管理、多线程、性能优化和可维护性。解决方案包括使用智能指针、现代线程库、SIMD指令和第三方库,并遵循代码风格指南和使用自动化工具。实践案例展示了如何利用Eigen库实现线性回归算法,有效地管理内存和使用高性能矩阵操作。

译者|李睿审校|重楼人工智能(AI)和机器学习(ML)模型如今变得越来越复杂,这些模型产生的输出是黑盒——无法向利益相关方解释。可解释性人工智能(XAI)致力于通过让利益相关方理解这些模型的工作方式来解决这一问题,确保他们理解这些模型实际上是如何做出决策的,并确保人工智能系统中的透明度、信任度和问责制来解决这个问题。本文探讨了各种可解释性人工智能(XAI)技术,以阐明它们的基本原理。可解释性人工智能至关重要的几个原因信任度和透明度:为了让人工智能系统被广泛接受和信任,用户需要了解决策是如何做出的

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

MetaFAIR联合哈佛优化大规模机器学习时产生的数据偏差,提供了新的研究框架。据所周知,大语言模型的训练常常需要数月的时间,使用数百乃至上千个GPU。以LLaMA270B模型为例,其训练总共需要1,720,320个GPU小时。由于这些工作负载的规模和复杂性,导致训练大模型存在着独特的系统性挑战。最近,许多机构在训练SOTA生成式AI模型时报告了训练过程中的不稳定情况,它们通常以损失尖峰的形式出现,比如谷歌的PaLM模型训练过程中出现了多达20次的损失尖峰。数值偏差是造成这种训练不准确性的根因,
