北大出品:纹理质量和多视角一致性的最新SOTA,在2分钟内实现1张图的3D转换
只需两分钟,玩转图片转3D!
还是高纹理质量、多视角高一致性的那种。
不管是什么物种,输入时的单视图图像还是这样婶儿的:
两分钟后,3D版大功告成:
△上,Repaint123(NeRF);下,Repaint123(GS)
新方法名为Repaint123,核心思想是将2D扩散模型的强大图像生成能力与再绘策略的纹理对齐能力相结合,来生成高质量、多视角一致的图像。
此外,该研究还引入了针对重叠区域的可见性感知自适应再绘强度的方法。
Repaint123一举解决了此前方法多视角偏差大、纹理退化、生成慢等问题。
目前项目代码还未在GitHub公布,就有100+人赶来标星码住:
Repaint123长啥样?
之前,将图像转换为3D的方法通常采用Score Distillation Sampling (SDS)。尽管该方法的结果令人印象深刻,但存在一些问题,如多视角不一致、过度饱和、过度平滑的纹理以及生成速度缓慢。
△从上至下:输入,Zero123-XL,Magic123,Dream gaussian
为了解决这些问题,来自北京大学、鹏城实验室、新加坡国立大学、武汉大学的研究人员提出了Repaint123。
总的来说,Repaint123有这几点贡献:
(1)Repaint123通过综合考虑图像到3D生成的可控重绘过程,能够生成高质量的图片序列,并确保这些图片在多个视角下保持一致。
(2)Repaint123提出了一个简单的单视图3D生成的基准方法。
在粗模阶段,它利用Zero123作为3D先验,并结合SDS损失函数,通过优化Gaussian Splatting几何,快速生成粗糙的3D模型(仅需1分钟)。
在细模阶段,它采用Stable Diffusion作为2D先验,并结合均方误差(MSE)损失函数,通过快速细化网格纹理,生成高质量的3D模型(同样只需1分钟)。
(3)大量的实验证明了Repaint123方法的有效性。它能够在短短2分钟内,从单张图像中生成与2D生成质量相匹配的高质量3D内容。
△实现3D一致且高质量的单视角3D快速生成
下面来看具体方法。
Repaint123专注于优化mesh细化阶段,其主要改进方向涵盖两个方面:生成具有多视角一致性的高质量图像序列以及实现快速而高质量的3D重建。
1、生成具有多视角一致性的高质量图像序列
生成具有多视角一致性的高质量图像序列分为以下三个部分:
△多视角一致的图像生成流程
DDIM反演
为了保留在粗模阶段生成的3D一致的低频纹理信息,作者采用了DDIM反演将图像反演到确定的潜在空间,为后续的去噪过程奠定基础,生成忠实一致的图像。
可控去噪
为了在去噪阶段控制几何一致性和长程纹理一致性,作者引入了ControlNet,使用粗模渲染的深度图作为几何先验,同时注入参考图的Attention特征进行纹理迁移。
此外,为了执行无分类器引导以提升图像质量,论文使用CLIP将参考图编码为图像提示,用于指导去噪网络。
重绘
渐进式重绘遮挡和重叠部分为了确保图像序列中相邻图像的重叠区域在像素级别对齐,作者采用了渐进式局部重绘的策略。
在保持重叠区域不变的同时,生成和谐一致的相邻区域,并从参考视角逐步延伸到360°。
然而,如下图所示,作者发现重叠区域同样需要进行细化,因为在正视时之前斜视的区域的可视分辨率变大,需要补充更多的高频信息。
另外,细化强度等于1-cosθ*,其中θ*为之前所有相机视角与所视表面法向量夹角θ的最大值,从而自适应地重绘重叠区域。
△相机视角与细化强度的关系
为了选择适当的细化强度,以在提高质量的同时保证忠实度,作者借鉴了投影定理和图像超分的思想,提出了一种简单而直接的可见性感知的重绘策略来细化重叠区域。
2、快速且高质量的3D重建
正如下图所展示的,作者在进行快速且高质量的3D重建过程中,采用了两阶段方法。
△Repaint123两阶段单视角3D生成框架
首先,他们利用Gaussian Splatting表示来快速生成合理的几何结构和粗糙的纹理。
同时,借助之前生成的多视角一致的高质量图像序列,作者能够使用简单的均方误差(MSE)损失进行快速的3D纹理重建。
一致性、质量和速度最优
研究人员对多个单视图生成任务的方法进行了比较。
△单视图3D生成可视化比较
在RealFusion15和Test-alpha数据集上,Repaint123取得了在一致性、质量和速度三个方面最领先的效果。
同时,作者也对论文使用的每个模块的有效性以及视角转动增量进行了消融实验:
并且发现,视角间隔为60度时,性能达到峰值,但视角间隔过大会减少重叠区域,增加多面问题的可能性,所以40度可作为最佳视角间隔。
论文地址:https://arxiv.org/pdf/2312.13271.pdf
代码地址:https://pku-yuangroup.github.io/repaint123/
项目地址:https://pku-yuangroup.github.io/repaint123/
以上是北大出品:纹理质量和多视角一致性的最新SOTA,在2分钟内实现1张图的3D转换的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

Windows 11 改进了系统中的个性化功能,这使用户可以查看之前所做的桌面背景更改的近期历史记录。当您进入windows系统设置应用程序中的个性化部分时,您可以看到各种选项,更改背景壁纸也是其中之一。但是现在可以看到您系统上设置的背景壁纸的最新历史。如果您不喜欢看到此内容并想清除或删除此最近的历史记录,请继续阅读这篇文章,它将帮助您详细了解如何使用注册表编辑器进行操作。如何使用注册表编辑

窗户从来不是一个忽视美学的人。从XP的田园绿场到Windows11的蓝色漩涡设计,默认桌面壁纸多年来一直是用户愉悦的源泉。借助WindowsSpotlight,您现在每天都可以直接访问锁屏和桌面壁纸的美丽、令人敬畏的图像。不幸的是,这些图像并没有闲逛。如果您爱上了Windows聚光灯图像之一,那么您将想知道如何下载它们,以便将它们作为背景保留一段时间。以下是您需要了解的所有信息。什么是WindowsSpotlight?窗口聚光灯是一个自动壁纸更新程序,可以从“设置”应用中的“个性化>

随着人工智能技术的不断发展,图像语义分割技术已经成为图像分析领域的热门研究方向。在图像语义分割中,我们将一张图像中的不同区域进行分割,并对每个区域进行分类,从而达到对这张图像的全面理解。Python是一种著名的编程语言,其强大的数据分析和数据可视化能力使其成为了人工智能技术研究领域的首选。本文将介绍如何在Python中使用图像语义分割技术。一、前置知识在深入

借助iOS17照片应用,Apple可以更轻松地根据您的规格裁剪照片。继续阅读以了解如何操作。以前在iOS16中,在“照片”应用程序中裁剪图像涉及几个步骤:点击编辑界面,选择裁剪工具,然后通过捏合缩放手势或拖动裁剪工具的角来调整裁剪。在iOS17中,值得庆幸的是,苹果简化了这个过程,这样当你放大照片库中任何选定的照片时,一个新的“裁剪”按钮会自动出现在屏幕的右上角。点击它会弹出完整的裁剪界面,其中包含您选择的缩放级别,因此您可以裁剪到您喜欢的图像部分,旋转图像,反转图像,或应用屏幕比例,或使用标记

那些必须每天处理图像文件的人经常不得不调整它们的大小以适应他们的项目和工作的需求。但是,如果要处理的图像太多,则单独调整它们的大小会消耗大量时间和精力。在这种情况下,像PowerToys这样的工具可以派上用场,除其他外,可以使用其图像调整大小器实用程序批量调整图像文件的大小。以下是设置图像调整器设置并开始使用PowerToys批量调整图像大小的方法。如何使用PowerToys批量调整图像大小PowerToys是一个多合一的程序,具有各种实用程序和功能,可帮助您加快日常任务。它的实用程序之一是图像

得益于 NeRF 提供的可微渲染,近期的三维生成模型已经在静止物体上达到了很惊艳的效果。但是在人体这种更加复杂且可形变的类别上,三维生成依旧有很大的挑战。本文提出了一个高效的组合的人体 NeRF 表达,实现了高分辨率(512x256)的三维人体生成,并且没有使用超分模型。EVA3D 在四个大型人体数据集上均大幅超越了已有方案,代码已开源。论文名称:EVA3D: Compositional 3D Human Generation from 2D image Collections论文地址:http

随着数字文化产业的蓬勃发展,人工智能技术开始广泛应用于图像编辑和美化领域。其中,人像美肤无疑是应用最广、需求最大的技术之一。传统美颜算法利用基于滤波的图像编辑技术,实现了自动化的磨皮去瑕疵效果,在社交、直播等场景取得了广泛的应用。然而,在门槛较高的专业摄影行业,由于对图像分辨率以及质量标准的较高要求,人工修图师还是作为人像美肤修图的主要生产力,完成包括匀肤、去瑕疵、美白等一系列工作。通常,一位专业修图师对一张高清人像进行美肤操作的平均处理时间为 1-2 分钟,在精度要求更高的广告、影视等领域,该

新视角图像生成(NVS)是计算机视觉的一个应用领域,在1998年SuperBowl的比赛,CMU的RI曾展示过给定多摄像头立体视觉(MVS)的NVS,当时这个技术曾转让给美国一家体育电视台,但最终没有商业化;英国BBC广播公司为此做过研发投入,但是没有真正产品化。在基于图像渲染(IBR)领域,NVS应用有一个分支,即基于深度图像的渲染(DBIR)。另外,在2010年曾很火的3D TV,也是需要从单目视频中得到双目立体,但是由于技术的不成熟,最终没有流行起来。当时基于机器学习的方法已经开始研究,比
